
A TREE FORMULA FOR THE ELLIPSOIDAL SUPERPOTENTIAL
OF THE COMPLEX PROJECTIVE PLANE

KYLER SIEGEL

Abstract. The ellipsoidal superpotential of the complex projective plane can be
interpreted as a count of rigid rational plane curves of a given degree with one
prescribed cusp singularity. In this note we present a closed formula for these counts
as a sum over trees with certain explicit weights. This is a step towards understanding
the combinatorial underpinnings of the ellipsoidal superpotential and its mysterious
nonvanishing and nondecreasing properties.
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1. Introduction
Given a closed symplectic manifold M2n, a homology class A P H2pMq, and a tuple of

positive real numbers a⃗ “ pa1, . . . , anq P Rn
ą0, the ellipsoidal superpotential Ta⃗

M,A P Q
is an enumerative invariant which encodes important information about (a) stabilized
symplectic embeddings of ellipsoids into M and (b) singular rational curves in M . In
this note we focus on the case of the complex projective plane M “ CP2, and we put
Ta

d :“ T
p1,aq

CP2,drLs
for a P Rą0

1 and d P Zě1, where rLs P H2pCP2q is the line class.
For instance, when Ta

d ‰ 0 we get an obstruction to symplectic embeddings of the
form Epµ, µaq ˆ CN s

ãÑ CP2 ˆ CN for µ P Rą0 and N P Zě0, and it is expected that
together these give a complete set of stable obstructions for symplectic embeddings of
ellipsoids into CP2 (c.f. [MS2, §2.7]). Moreover, when a “ p{q is a reduced fraction
such that p` q “ 3d, we have T

p{q
d ‰ 0 if and only if there exists a genus zero degree d

singular symplectic curve in CP2 which has one pp, qq cusp and is otherwise positively
immersed (see [MS2, Thm. E]). We call such singular curves sesquicuspidal, and their
existence in both the algebraic and symplectic categories are subtle problems which are
closely linked.
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1In the definition it is convenient to assume that a is irrational, and we extend this to rational a P Rą0

by the convention Ta
d :“ Ta`δ

d for δ ą 0 sufficiently small.
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To define Ta⃗
M,A, we first consider the compact symplectic manifold with boundary

Ma⃗ :“ M z ιpE̊pεa⃗qq, where ι : Epεa⃗q
s

ãÑ M is a symplectic embedding for some small
ε ą 0. Here Ep⃗aq “ tπ

řn
i“1

1
ai

|zi|
2 ď 1u Ă Cn denotes the closed symplectic ellipsoid

with area factors pa1, . . . , anq and E̊p⃗aq denotes its interior. Let xMa⃗ :“ Ma⃗YpRď0ˆBMa⃗q

denote the symplectic completion of Ma⃗, and let J be an admissible almost complex
structure on xMa⃗ in the sense of symplectic field theory (SFT). Then Ta⃗

M,A is the count
of index zero finite energy J-holomorphic planes u : C Ñ xMa⃗. In general this is a virtual
count taking rational values, although it is shown in [MS2, §2] that in many important
cases it can be defined using classical pseudoholomorphic curve techniques and takes
integer values. For instance, this is the case for T

p{q
d whenever p{q is a reduced fraction

satisfying p` q “ 3d.
As illustrated above, a central question is to understand when Ta⃗

M,A is nonzero. For
example, we have:

Conjecture 1.1. For any reduced fraction p{q ą 1 satisfying p` q “ 3d and pp´ 1qpq´

1q ď pd´ 1qpd´ 2q, we have T
p{q
d ‰ 0.

This is equivalent to the statement that there exists an index zero pp, qq-sesquicuspidal
symplectic curve in CP2 of genus zero and degree d if and only if it is allowed by the
adjunction formula, which states here that the count of singularities excluding the pp, qq

cusp is 1
2pd´ 1qpd´ 2q ´ 1

2pp´ 1qpq ´ 1q. It is known that an affirmative answer would
in particular imply optimality of Hind’s folding embedding Epµ, µaq ˆ CN s

ãÑ CP2 ˆ CN

with µ “ a`1
3a for all N P Zě1 and a ą τ4, where τ “ 1`

?
5

2 is the golden ratio (see [Hin]).
Another closely related question concerns the behavior of Ta

d as a function of a:

Conjecture 1.2. The count Ta
d P R is nondecreasing as a function of a P Rą1.

The recent article [MS3] gives a recursive formula for Ta⃗
M,A, which takes the fol-

lowing form in the case M “ CP2. Firstly, we associate to each a P Rą0 a unit
step lattice path Γa

0,Γ
a
1,Γ

a
2, ¨ ¨ ¨ P Z2

ě0. Explicitly, for k P Zě0 and a irrational, Γa
k

is the pair pi, jq P Z2
ě0 which minimizes maxti, aju subject to i ` j “ k. For ex-

ample, in the case a “ 3
2 ` δ with δ ą 0 sufficiently small the first few terms are

p0, 0q, p1, 0q, p1, 1q, p2, 1q, p3, 1q, p3, 2q, p4, 2q, p4, 3q, and so on (see [MS3, Fig. 1] for an
illustration).

Theorem 1.3 ([MS3]). For any a P Rą0 and d P Zě1 we have:

rTa
d “

`

Γa
3d´1

˘

!

¨

˚

˚

˚

˚

˝

pd!q´3 ´
ÿ

kě2
d1,...,dkPZě1
d1`¨¨¨`dk“d

rTa
d1

¨ ¨ ¨ ¨ ¨ rTa
dk

k!p
řk

s“1 Γ
a
3di´1q!

˛

‹

‹

‹

‹

‚

. (1.1)

Here we put rTa
d :“ multapΓa

kq ¨ Ta
d, where multapi, jq “ i if i ą aj and multapi, jq “ j

otherwise, and we write (1.1) using rTa
d instead of Ta

d as convenience which yields a slightly
simpler formula. We add pairs in Z2

ě0 componentwise in the usual fashion, and we define
the factorial of a pair pi, jq by pi, jq! :“ i!j!. Note that all dependence on a in (1.1) is
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via the lattice path Γa
0,Γ

a
1,Γ

a
2, ¨ ¨ ¨ P Z2

ě0. The term pd!q´3 arises from the computation
of degree zero genus zero stationary gravitational descendant Gromov–Witten invariants
of CP2 (see [MS3, §5.3.2] and (3.1) below).

Although Theorem 1.3 and its generalization makes it possible to compute Ta
d for any

fixed d P Zě1 and a P Rą0 given enough computational power, its recursivity somewhat
obscures its enumerative essence, and the presence of terms of both positive and negative
sign complicates efforts to study e.g. Conjecture 1.1 or Conjecture 1.2. Even more
basically, although it is known by geometric arguments [McD, MS1] that we have T8

d ą 0

for all d P Zě1
2, this is not a priori clear from Theorem 1.3.3 Similarly, it follows by

automatic transversality and the results in [MS2, §2] that T
p{q
d is a nonnegative integer

whenever p{q ą 1 is a reduced fraction with p ` q “ 3d, but this is not obvious from
(1.1) due to the presence of denominators.

The above considerations motivate the search for a positive combinatorial formula
for Ta

d. In this note we take a step in this direction by establishing a closed formula
for Ta

d as a sum over trees with d leaves and certain explicit, combinatorially defined
weights. Our formula still has some negative terms which we are not able to avoid, but
they enter in a fairly transparent way, which could open further avenues for studying
Ta⃗

M,A via combinatorics.
Before stating the formula, we will need some graph theoretic terminology.

Definition 1.4. For k P Zě1, let Tun
k denote the set of (isomorphism classes of) rooted

trees with k unordered leaves and no bivalent vertices (i.e. no vertices with |v| “ 2).
In other words, a tree T P Tun

k has a distinguished root vertex and k leaf vertices, and
the remaining vertices are called internal. We denote the set of leaf vertices by VleafpT q

and the set of internal vertices by VinpT q. See Figure 1 for a picture of Tun
4 .

We orient all edges of T towards the root, and we will say that v is “above” w if w lies
on the oriented path from v to the root.
Definition 1.5. For a tree T in Tun

k , an internal vertex v P VinpT q is movable if
there are no internal vertices above it. We denote the set of movable vertices of T by
VmovpT q Ă VinpT q.
Definition 1.6. For a vertex v of a tree T in Tun

k , the leaf number ℓpvq is the number
of leaf vertices lying above v, including possibly v itself (i.e. ℓpvq “ 1 if v is a leaf vertex).

We are now ready to state our main result:
Theorem A. For any d P Zě1, we have:

rTa
d “ pΓa

2!q
d

ÿ

TPTun
d

p´1q|VinpT q z VmovpT q|

|AutpT q|
¨

ź

vPVinpT q

¨

˚

˚

˝

Γa
3ℓpvq´1!

ˆ

ř

v1Ñv

Γa
3ℓpv1q´1

˙

!

˛

‹

‹

‚

¨
ź

vPVmovpT q

ˆ

pℓpvq!q´2 pℓpvqΓa
2q!

pΓa
2!q

ℓpvq
´ 1

˙

.

(1.2)
2Here we put T8

d :“ Ta
d for a " d. This corresponds to the count from [MS1] of degree d rational

plane curves satisfying an order 3d ´ 1 local tangency constraint, which essentially amounts to fixing the
p3d ´ 2q-jet at a point.

3A fortiori, it follows by the obstruction bundle gluing method of [McD] that T8
d is nondecreasing as

a function of d P Zě1.
3


















 

Figure 1. The trees comprising Tun
4 . The top four vertices are the leaves

and the bottom vertex is the root. The internal vertices are denoted with
a large circle, which is open for a movable vertex and solid otherwise. The
values of |AutpT q| are 24, 6, 2, 4, 8 respectively.

Here the sum
ř

v1Ñv

is over all vertices v1 which are adjacent to v and lie strictly above it.

Remark 1.7. Note that we have Γa
2 “ 1 for 1 ă a ă 2 and Γa

2 “ 2 for a ě 2. Therefore
the last parenthesized term in (1.2) is 1

ℓpvq! ´ 1 if 1 ă a ă 2 and 2´ℓpvq
`2ℓpvq

ℓpvq

˘

´ 1 if a ě 2.

In the latter case one can check that the term 2´ℓpvq
`2ℓpvq

ℓpvq

˘

´ 1 is always positive, so
a summand in (1.2) is negative if and only if there are an odd number of “unmovable”
vertices v P VinpT q z VmovpT q. ♢

In the special case a " 1, we have Γ8
k “ pk, 0q for all k P Zě0, so we get the following

formula for rT8
d “ p3d´ 1qT8

d :

Corollary B. For d P Zě1 we have:

rT8
d “ 2d

ÿ

TPTun
d

p´1q|VinpT q z VmovpT q|

|AutpT q|
¨

ź

vPVinpT q

ˆ

p3ℓpvq ´ 1q!

p3ℓpvq ´ |v| ` 1q!

˙

¨
ź

vPVmovpT q

ˆ

2´ℓpvq

ˆ

2ℓpvq

ℓpvq

˙

´ 1

˙

.

(1.3)

Here |v| denotes the valency (a.k.a. degree) of v. Equivalently, this is the number of
incoming edges plus 1, where for v P VinpT q the incoming (resp. outgoing) edges of v
are those edges of T which have v as an endpoint and are oriented towards (resp. away
from) v.

Example 1.8. In the case d “ 1, there is just a single tree in Tun
1 , which has no internal

vertices. Both products in (1.3) are vacuous, so we get rT8
1 “ 2 and thus T8

1 “ 1
2

rT8
1 “ 1.

♢

Example 1.9. In the case d “ 2, there is also just one tree in Tun
2 , which has one

internal vertex, and that vertex is movable with leaf number is 2. Then (1.3) gives

rT8
2 “ 22 ¨

p´1q0

2
¨
5!

4!
¨

ˆ

2´2

ˆ

4

2

˙

´ 1

˙

“ 5,

and thus T8
2 “ 1

5
rT8
2 “ 1. ♢

Example 1.10. To compute rT8
3 , put Tun

3 “ tT1, T2u, where T1 has a single internal
vertex of valency 4 and T2 has two internal vertices each of valency 3. We have |AutpT1q| “
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3! and |AutpT2q| “ 2!. The internal vertex of T1 is movable and has leaf number 3. The
internal vertices of T2 have leaf numbers 2, 3, and the first is movable while the second is
not. Plugging these into (1.3) gives

rT8
3 “ 23

ˆ

1

3!

8!

6!

„

2´3

ˆ

6

3

˙

´ 1

ȷ

´
1

2!

5!

4!

8!

7!

„

2´2

ˆ

4

2

˙

´ 1

ȷ˙

“ 23p14 ´ 10q “ 32,

and hence T8
3 “ 1

8
rT8
3 “ 4. ♢

Remark 1.11. Let Tor
d be defined just like Tun

d , except with ordered leaves (see Defini-
tion 2.1). Curiously, we have precisely T8

d “ |Tor
d | for d “ 1, 2, 3, 4, while experimentally

we have T8
d ă |Tor

d | for d ě 5. This perhaps suggests that T8
d counts elements of Tor

d
with some additional conditions which only become relevant when there are at least 5
leaves. ♢

The main ingredients in the proof of Theorem A are (i) the computation from [MS3]
of genus zero punctured stationary descendants in symplectic ellipsoids (see Theorem 3.1
below), and (ii) homological perturbation theory for L8 algebras. First, in §2 we recall
some relevant formalism for L8 algebras and state an explicit formula for inverting
L8 homomorphisms between evenly graded L8 algebras. Then, in §3 we combine this
with the computation for punctured stationary descendants in ellipsoids to give a closed
formula for Ta

d, which after some manipulations yields (1.2).

Acknowledgements
This note is an offshoot of the joint project [MS3] with Grisha Mikhalkin, to whom I

am grateful for many helpful discussions.

2. Homological perturbation theory
L8 algebras provide a useful framework for organizing the curve counts underlying

the ellipsoidal superpotential. Here we will give a minimal treatment, referring the
reader to [MS3, §3] and the references therein for more details. An L8 algebra over Q by
definition consists of a Z-graded rational vector space V along multilinear k-to-1 maps
ℓk for k P Zě1 which are symmetric (in a suitable graded sense) and satisfy an infinite
sequence of quadratic relations. As it happens, in this note we will only need to consider
evenly graded L8 algebras over Q, which are simply evenly graded rational vector spaces.
Indeed, if V is only supported in even degrees then all of the L8 operations ℓ1, ℓ2, ℓ3, . . .
necessarily vanish for degree parity reasons, and moreover all of the Koszul-type signs
conveniently disappear.

Given an evenly graded L8 algebra V , its (reduced) symmetric tensor coalgebra is
SV “ ‘8

k“1 dk V , where dkV :“ pV b ¨ ¨ ¨ b V
loooooomoooooon

k

q{Σk is the k-fold symmetric tensor power

of V . Here Σk is the permutation group on k elements, acting on dkV in the obvious
5



way (without signs). The coproduct on ∆SV : SV Ñ SV b SV is given by

∆SV pv1 d ¨ ¨ ¨ d vkq “

k´1
ÿ

i“1

ÿ

σPShpi,k´iq

pvσp1q d ¨ ¨ ¨ d vσpiqq b pvσpi`1q d ¨ ¨ ¨ d vσpkqq,

where Shpi, k ´ iq is the subset of permutations σ P Σk satisfying σp1q ă ¨ ¨ ¨ ă σpiq and
σpi` 1q ă ¨ ¨ ¨ ă σpkq.

Given evenly graded L8 algebras V,W over Q, an L8 homomorphism Φ : V Ñ W
is simply a sequence of degree zero4 linear maps Φk : dkV Ñ W for k P Zě1, i.e.
each Φk is a multilinear map with k symmetric inputs in V and one output in W .
The maps Φ1,Φ2,Φ3, . . . can be uniquely assembled into a degree zero coalgebra map
pΦ : SV Ñ SW , i.e. a linear map satisfying

ppΦ b pΦq ˝ ∆SV “ ∆SW ˝ pΦ,

where
pΦpv1, . . . , vkq “

ÿ

sě1
1ďk1ď¨¨¨ďks
k1`¨¨¨`ks“k

ÿ

σPShpk1,...,ksq

pΦk1 d ...d Φksqpvσp1q d ...d vσpkqq.

Conversely, given such a coalgebra map pΦ we recover Φ1,Φ2,Φ3, . . . via the compositions

dkV Ă SV SW W,
pΦ π1

where π1 : SW Ñ W is the projection to tensors of word length one.
If V1, V2, V3 are evenly graded L8 algebras over Q and we have L8 homomorphisms

Φ : V1 Ñ V2 and Ψ : V2 Ñ V3, then the composition L8 homomorphism Ψ ˝ Φ : V1 Ñ V3
is characterized by {Ψ ˝ Φ “ pΨ ˝ pΦ. In terms of the operations Φ1,Φ2,Φ3, . . . and
Ψ1,Ψ2,Ψ3, . . . this translates into pΨ ˝ Φq1pv1q “ pΨ1 ˝ Φ1qpv1q, pΨ ˝ Φq2pv1, v2q “

Ψ1pΦ2pv1, v2qq ` Ψ2pΦ1pv1q,Φ1pv2qq, and so on. The identity L8 homomorphism 1 :
V Ñ V corresponds to the identity map SV Ñ SV , or equivalently 11 : V Ñ V is the
identity map and 1k ” 0 for all k P Zě2.

Trees arise naturally in L8 contexts, and it is sometimes convenient to work with
trees with ordered leaves.

Definition 2.1. For k P Zě1, let Tor
k denote the set of (isomorphism classes of) rooted

trees with k ordered leaves and no bivalent vertices.

Note that the ordering of the leaf vertices of T P Tor
k amounts to a bijection between

VleafpT q and t1, . . . , ku. We will also refer to the edges connected to the leaf vertices as
the leaf edges, and the edge connected to the root vertex as the root edge. The set
Tun
k is the quotient Tor

k {Σk by the natural symmetric group action on Tor
k which reorders

the leaves, and the stabilizer of a tree T P Tor
k is the automorphism group AutpT q of T .

The following proposition is proved using standard techniques from homological
perturbation theory. One can formulate a more general version without any grading
restrictions, but here we state a simplified version which suffices for our purposes.

4Note that some references use different grading conventions.
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Proposition 2.2. Let V and W be evenly graded L8 algebras over Q, and let Φ : V Ñ W
be an L8 homomorphism such that the linear map Φ1 : V Ñ W is invertible. Then there
exists an L8 homomorphism Ψ :W Ñ V such that

Ψ ˝ Φ “ 1V and Φ ˝ Ψ “ 1W .

Moreover, Ψ is given explicitly as follows. We first set Ψ1 :W Ñ V to be the inverse
of Φ1 : V Ñ W . For k ě 2, T P Tor

k , and w1, . . . , wk P W , define ΨT pw1, . . . , wkq as
follows. Start by labeling the ith leaf edge of T by Ψ1pwiq for i “ 1, . . . , k. Recursively,
for each internal vertex v P VinpT q, say with j incoming edges, label the outgoing edge by
the result after applying Ψ1 ˝ Φj to the corresponding labels of its incoming edges. We
define ΨT pw1, . . . , wkq to be the resulting label on the root edge, and finally put

Ψkpw1, . . . , wkq “
ÿ

TPTor
k

p´1q|VinpT q|ΨT pw1, . . . , wkq.

Example 2.3. We have:

‚ Ψ2px, yq “ ´Ψ1Φ2pΨ1pxq,Ψ1pyqq

‚ Ψ3px, y, zq “ ´Ψ1Φ3pΨ1pxq,Ψ1pyq,Ψ1pzqq`Ψ1Φ2pΨ1pxq,Ψ1Φ2pΨ1pyq,Ψ1pzqqq`

Ψ1Φ2pΨ1pyq,Ψ1Φ2pΨ1pxq,Ψ1pzqqq ` Ψ1Φ2pΨ1pzq,Ψ1Φ2pΨ1pxq,Ψ1pyqqq.

♢

Proof. The relation Ψ˝Φ “ 1 means that for k ě 2 we must have pΨ˝Φqkpv1, . . . , vkq “ 0
for any v1, . . . , vk P V , and this amounts to

ÿ

sě1
1ďk1ď¨¨¨ďks
k1`¨¨¨`ks“k

ÿ

σPShpk1,...,ksq

Ψs ˝ pΦk1 d ¨ ¨ ¨ d Φksqpvσp1q, . . . , vσpkqq “ 0,

or equivalently

ΨkpΦ1pv1q, . . . ,Φ1pvkqq “ ´
ÿ

1ďsďk´1
1ďk1ď¨¨¨ďks
k1`¨¨¨`ks“k

ÿ

σPShpk1,...,ksq

Ψs ˝ pΦk1 d ¨ ¨ ¨ d Φksqpvσp1q, . . . , vσpkqq,

i.e. for any w1, . . . , wk P W we must have

Ψkpw1, . . . , wkq “ ´
ÿ

1ďsďk´1
1ďk1ď¨¨¨ďks
k1`¨¨¨`ks“k

ÿ

σPShpk1,...,ksq

Ψs ˝ pΦk1 d ¨ ¨ ¨ d ΦksqpΨ1pwσp1qq, . . . ,Ψ
1pwσpkqqq.

This is easily seen to agree with the definition of Ψ given in the statement of the
proposition, which therefore necessarily satisfies Ψ ˝ Φ “ 1.

As for the relation Φ ˝ Ψ “ 1, we need
ÿ

sě1
1ďk1ď¨¨¨ďks
k1`¨¨¨`ks“k

ÿ

σPShpk1,...,ksq

Φs ˝ pΨk1 d ¨ ¨ ¨ d Ψksqpwσp1q, . . . , wσpkqq “ 0

7



for any w1, . . . , wk P W , or equivalently

Φ1pΨkpw1, . . . , wkqq “ ´
ÿ

sě2
1ďk1ď¨¨¨ďks
k1`¨¨¨`ks“k

ÿ

σPShpk1,...,ksq

Φs ˝ pΨk1 d ¨ ¨ ¨ d Ψksqpwσp1q, . . . , wσpkqq,

i.e.

Ψkpw1, . . . , wkq “ ´
ÿ

sě2
1ďk1ď¨¨¨ďks
k1`¨¨¨`ks“k

ÿ

σPShpk1,...,ksq

Ψ1 ˝ Φs ˝ pΨk1 d ¨ ¨ ¨ d Ψksqpwσp1q, . . . , wσpkqq,

which is equivalent to our definition of Ψk. □

3. Tree formula
Before proving Theorem A, we recall the computation of punctured stationary de-

scendants in ellipsoids from [MS3], and explain how this relates to the L8 formalism
from the previous section. For the time being we take M2n to be any closed symplectic
manifold and A P H2pMq a homology class. We associate to each a⃗ P Rn

ą0 an evenly
graded L8 algebra Ca⃗ with basis given by formal symbols oa⃗i with degree |oa⃗i | “ ´2 ´ 2i
for i P Zě1. We encode the ellipsoidal superpotential in terms of these L8 algebras by
putting ma⃗

M,A :“ rTa⃗
M,A oa⃗c1pAq´1 and

expApma⃗
M q :“

ÿ

kě1
A1,...,AkPH2pMq

A1`¨¨¨`Ak“A

1
k!m

a⃗
M,A1

d ¨ ¨ ¨ d ma⃗
M,Ak

.

This corresponds to collections of rigid pseudoholomorphic planes in xMa⃗ of total homology
class A.

We denote the genus zero Gromov–Witten invariant of M in homology class A and
carrying a maximal order stationary descendant by NM,A<ψc1pAq´2pt> P Q (see e.g.
[Koc] or the discussion in [MS3, §5.3]). In this note we will only need the computation
of these invariants for CP2, namely

NCP2,drLs<ψ
3d´2pt> “ pd!q´3 (3.1)

for all d P Zě1. To first approximation, NM,A<ψc1pAq´2pt> can be thought of as the
count (up to a combinatorial factor) of rational pseudoholomorphic curves in M in
homology class A with prescribed pc1pAq ´ 1q-jet at a point. However, compared with
the corresponding local tangency <T c1pAq´2pt>, the descendant counts typically receive
extra contributions from boundary strata with ghost components.

Let us introduce one more evenly graded L8 algebra Co with basis given by formal
symbols qi for i P Zě1. Put mo

M,A :“ NM,A<ψc1pAq´2pt> q3d´1 and

expApmo
M q :“

ÿ

kě1
A1,...,AkPH2pMq

A1`¨¨¨`Ak“A

1
k!m

o
M,A1

d ¨ ¨ ¨ d mo
M,Ak

.
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Theorem 3.1 ([MS3]). For each a⃗ P Rn
ą0 we have

pϵa⃗pexpApma⃗
M qq “ expApmo

M q, (3.2)

where ϵa⃗ : Ca⃗ Ñ Co is the L8 homomorphism defined by

ϵka⃗poa⃗i1 , . . . , o
a⃗
ik

q “
1

pΓa⃗
i1

` ¨ ¨ ¨ ` Γa⃗
ik

q!
(3.3)

for each k, i1, . . . , ik P Zě1.

Here Γa⃗
0,Γ

a⃗
1,Γ

a⃗
2, . . . is the higher dimensional generalization of the lattice path Γa

0,Γ
a
1,Γ

a
2, . . . ,

namely for a⃗ rationally independent Γa⃗
k is the tuple pi1, . . . , inq P Zn

ě0 which minimizes
maxta1i1, . . . , aninu subject to i1 ` ¨ ¨ ¨ ` in “ k.

At this point the statement of Theorem 3.1 is formally self-contained, but we should
give at least some geometric intuition. In essence, (3.2) is the algebraic relation given
by neck stretching closed curve stationary descendants in M along the boundary of
(a rescaling of) the ellipsoid Ep⃗aq. Meanwhile, (3.3) is the computation of punctured
curve stationary descendants in the symplectic completion of Ep⃗aq. More precisely, for
a⃗ P Rą0 with rationally independent components, we identify oa⃗k with the Reeb orbit of
kth smallest action (or equivalently Conley–Zehnder index n´ 1 ` 2k) in BEp⃗aq. Then
ϵka⃗poa⃗i1 , . . . , o

a⃗
ik

q encodes the count of rational pseudoholomorphic curves in pEp⃗aq with
positive punctures asymptotic to the Reeb orbits oa⃗i1 , . . . , o

a⃗
ik

and carrying the stationary
descendant condition <ψc1pAq´2pt> (see [MS3, §3.2]).

Let ηa⃗ : Co Ñ Ca⃗ denote L8 homomorphism inverse to ϵa⃗ : Ca⃗ Ñ Co, whose explicit
construction is provided by Proposition 2.2. In particular, η1a⃗ is the linear inverse of ϵ1a⃗,
i.e. for k P Zě1 we have

ϵ1a⃗poa⃗kq “
qk

pΓa⃗
kq!

and η1a⃗pqkq “ pΓa⃗
kq!oa⃗k.

As above, let π1 : SCa Ñ Ca denote the projection to tensors of word length one.
Applying π1 ˝ pηa⃗ to both sides of (3.2) gives

π1pexpApma⃗
M qq “ pπ1 ˝ pηa⃗qpexpApmo

M qq,

i.e.

ma⃗
M,A “

ÿ

kě1
A1,...,AkPH2pMq

A1`¨¨¨`Ak“A

1
k!η

k
a⃗pmo

M,A1
, . . . ,mo

M,Ak
q

“
ÿ

kě1
A1,...,AkPH2pMq

A1`¨¨¨`Ak“A

1
k!

ÿ

TPTor
k

p´1q|VinpT q|ηTa⃗ pmo
M,A1

, . . . ,mo
M,Ak

q.

Using ma⃗
M,A “ rTa⃗

M,A ¨oa⃗c1pAq´1 and mo
M,A “ NM,A<ψc1pAq´2pt> ¨qc1pAq´1, we can rewrite

the above as
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rTa⃗
M,A ¨ oa⃗c1pAq´1

“
ÿ

kě1
A1,...,AkPH2pMq

A1`¨¨¨`Ak“A

1
k!

˜

k
ź

s“1

NM,As<ψ
c1pAsq´2pt>

¸

ÿ

TPTor
k

p´1q|VinpT q|ηTa⃗ pqc1pA1q´1, . . . , qc1pAkq´1q.

(3.4)

We now specialize to the case M “ CP2 and A “ drLs, so that (3.4) becomes
rTa
d ¨ oa3d´1 “

ÿ

kě1
d1,...,dkPZě1
d1`¨¨¨`dk“d

1
k!pd1!q3¨¨¨pdk!q3

ÿ

TPTor
k

p´1q|VinpT q|ηTa pq3d1´1, . . . , q3dk´1q. (3.5)

Here similar to above we put oak :“ o
p1,aq

k , ϵa :“ ϵp1,aq, and so on.
Our goal is to rewrite (3.5) as a sum over trees with exactly d leaves. We will introduce

relevant notation as we need it.

Notation 3.2. Given d1, . . . , dk P Zě1 with d1 ` ¨ ¨ ¨ ` dk “ d, let Ppd1, . . . , dkq denote
the set of surjections h : t1, . . . , du ↠ t1, . . . , ku such that |h´1piq| “ di for i “ 1, . . . , k.

Then we can rewrite (3.5) temporarily more redundantly as

rTa
d ¨ oa3d´1 “

ÿ

kě1
d1,...,dkPZě1
d1`¨¨¨`dk“d

1

k!pd1!q3 ¨ ¨ ¨ pdk!q3

ˆ

d

d1, . . . , dk

˙´1
ÿ

hPPpd1,...,dkq

ÿ

TPTor
k

p´1q|VinpT q|ηTa pq3d1´1, . . . , q3dk´1q.

Notation 3.3.
(1) Put

Tor
k pt1, . . . , duq :“ tpT, hq | T P Tor

k , h : t1, . . . , du ↠ t1, . . . , kuu ,

i.e. Tor
k pt1, . . . , duq is the set of trees T P Tor

k equipped with a partition of t1, . . . , du

into k parts labeled by the leaves of T .
(2) Given pT, hq P Tor

k pt1, . . . , duq, put

CpT,hq :“
1

pd1!q2 ¨ ¨ ¨ pdk!q2
and ϵpT,hq

a pq‚q :“ ϵTa pq3d1´1, . . . , q3dk´1q,

where di :“ |h´1piq| for i “ 1, . . . , k.

We then have
rTa
d ¨ oa3d´1 “

ÿ

kě1

ÿ

pT,hqPTor
k pt1,...,duq

1
k!d! ¨ CpT,hq ¨ p´1q|VinpT q|ηpT,hq

a pq‚q.

Notation 3.4. Put

Tun
k pt1, . . . , duq “ tpT, hq | T P Tun

k , h : t1, . . . , du ↠ VleafpT qu,

i.e. an element of Tun
k pt1, . . . , duq is a tree T P Tun

k with k unordered leaves equipped with
a partition of t1, . . . , du into k parts labeled by the leaves of T . Put also

Tunpt1, . . . , duq :“
ď

1ďkďd

Tun
k pt1, . . . , duq.
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Note that the symmetric group Σk acts freely on Tor
k pt1, . . . , duq via σ ¨ pT, hq “ pT 1, σ˝hq,

where T 1 is given by reordering the leaves of T according to the permutation σ P Σk, and
the quotient is identified with Tun

k pt1, . . . , duq. We then have

rTa
d ¨ oa3d´1 “

ÿ

pT,hqPTunpt1,...,duq

1
d! ¨ CpT,hq ¨ p´1q|VinpT q|ηpT,hq

a pq‚q. (3.6)

Observe that there is a natural map

ζ : tpT,Sq | T P Tor
d ,S Ă VmovpT qu Ñ Tunpt1, . . . , duq,

defined as follows. Given pT,Sq, let T 1 be the tree obtained by removing all edges and
vertices strictly above v, for each v P S. Note that each v P S becomes a leaf in T 1. We
define a surjection h : t1, . . . , du ↠ VleafpT

1q in such a way that
‚ if v P VleafpT

1q corresponds to a leaf of T , then h´1pvq is the original label of v
‚ for v P S, h´1pvq is the set of labels of leaves lying above v in T .

We put ζpT,Sq “ pT 1, hq.
In fact, ζ is a bijection, with inverse map

ζ´1 : Tunpt1, . . . , duq Ñ tpT,Sq | T P Tor
d ,S Ă VmovpT qu

described as follows. Given pT, hq P Tunpt1, . . . , duq, for each v P VleafpT q such that
|h´1pvq| ě 2 we add |h´1pvq| new leaf vertices, each joined to v by a new leaf edge. By
construction the resulting tree T 1 comes with a natural bijection t1, . . . , du

„
ÝÑ VleafpT

1q,
i.e. T 1 P Tor

d . Also, each v P VleafpT q satisfying |h´1pvq| ě 2 naturally corresponds to a
movable vertex in T 1, and we denote the set of these by S Ă VmovpT 1q. Then we have
ζ´1pT, hq “ pT 1,Sq.

Using this bijection, we rewrite (3.6) as:

rTa
d ¨ oa3d´1 “ 1

d!

ÿ

TPTor
d

ÿ

SĂVmovpT q

CζpT,Sq ¨ p´1q|VinpζpT,Sqq|ηζpT,Sq
a pq‚q. (3.7)

It will be convenient to extend the notion of leaf number to elements of Tunpt1, . . . , duq

as follows. For pT, hq P Tunpt1, . . . , duq, we define the leaf number ℓpvq to be the
cardinality of

Ť

w
|h´1pwq|, where the union is over all leaf vertices w lying above v

(including possibly v itself).

Proof of Theorem A. According to Proposition 2.2, ηTa pq3d1´1, . . . , q3dk´1q is computed
as follows. Recall that T P Tor

k has k ordered leaves. For i “ 1, . . . , k, we label the ith
leaf edge by η1apq3di´1q “ pΓa

3di´1q! oa3di´1. We then iteratively label each edge of T , say
with source vertex v, by the result of applying η1a ˝ ϵja to the labels of the incoming edges
of v (here the valency of v is j ` 1).

Then for T P Tor
d and S Ă VmovpT q, with ζpT,Sq P Tunpt1, . . . , duq as defined above

we have:

ηζpT,Sq
a pq‚q “

ź

vPVleafpζpT,Sqq

´

Γa
3ℓpvq´1

¯

! ¨

ś

vPVinpζpT,Sqq

´

Γa
3ℓpvq´1

¯

!

ś

vPVinpζpT,Sqq

ˆ

ř

v1Ñv

Γa
3ℓpv1q´1

˙

!

¨ oa3d´1. (3.8)
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Observe that in the case S “ ∅, ζpT,∅q is simply T itself but viewed as an element of
Tunpt1, . . . , duq, and we have

ηζpT,∅q
a pq‚q “ ηTa pq2, . . . , q2

loooomoooon

d

q “
ź

vPVleafpT q

´

Γa
3ℓpvq´1

¯

! ¨

ś

vPVinpT q

´

Γa
3ℓpvq´1

¯

!

ś

vPVinpT q

ˆ

ř

v1Ñv

Γa
3ℓpv1q´1

˙

!

¨ oa3d´1,

(3.9)

where

Γa
2! “

#

1 if 1 ă a ă 2

2 if a ě 2.

We have natural a identification VinpT q « VinpζpT,Sqq Y S, and the leaves of ζpT,Sq

correspond to (a) leaves of T not lying above any v P S and (b) elements of S. Then,
comparing (3.8) and (3.9), we have

ηζpT,Sq
a pq‚q “ ηζpT,∅q

a pq‚q ¨

ś

vPS

´

Γa
3ℓpvq´1

¯

!

ś

vPS
pΓa

2!q
ℓpvq

¨

ś

vPS

ˆ

ř

v1Ñv

Γa
3ℓpv1q´1

˙

!

ś

vPS

´

Γa
3ℓpvq´1

¯

!

“ ηζpT,∅q
a pq‚q ¨

ź

vPS

pℓpvqΓa
2q!

pΓa
2!q

ℓpvq
.

Note that we have CζpT,Sq “

ˆ

ś

vPS
ℓpvq!

˙´2

, and hence

rTa
d ¨ oa3d´1 “ 1

d!

ÿ

TPTor
d

p´1q|VinpT q|
ÿ

SĂVmovpT q

CζpT,Sq ¨ p´1q|S| ¨ ηζpT,Sq
a pq‚q

“ 1
d!

ÿ

TPTor
d

p´1q|VinpT q| ¨ ηζpT,∅q
a pq‚q

ÿ

SĂVmovpT q

˜

ź

vPS
ℓpvq!

¸´2

¨ p´1q|S| ¨
ź

vPS

pℓpvqΓa
2q!

pΓa
2!q

ℓpvq
.

We also have

ηζpT,∅q
a pq‚q “ pΓa

2!q
d ¨

ź

vPVinpT q

´

Γa
3ℓpvq´1

¯

!
˜

ř

v1Ñv

Γa
3ℓpv1q´1

¸

!

¨ oa3d´1,

and hence

rTa
d “ 1

d!pΓ
a
2!q

d
ÿ

TPTor
d

p´1q|VinpT q| ¨
ź

vPVinpT q

´

Γa
3ℓpvq´1

¯

!
˜

ř

v1Ñv

Γa
3ℓpv1q´1

¸

!

¨
ÿ

SĂVmovpT q

p´1q|S| ¨
ź

vPS
pℓpvq!q´2 pℓpvqΓa

2q!

pΓa
2!q

ℓpvq

“ 1
d!pΓ

a
2!q

d
ÿ

TPTor
d

p´1q|VinpT q| ¨
ź

vPVinpT q

´

Γa
3ℓpvq´1

¯

!
˜

ř

v1Ñv

Γa
3ℓpv1q´1

¸

!

¨
ź

vPVmovpT q

ˆ

1 ´ pℓpvq!q´2 pℓpvqΓa
2q!

pΓa
2!q

ℓpvq

˙

.

Finally, we can write this as a sum over Tun
d by recalling that there is a natural forgetful

map Tor
d Ñ Tun

d and the fiber of any T P Tun
d has cardinality d!

|AutpT q|
. □
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