
MIDTERM 1

MATH 2030 ODE, SPRING 2018

Instructions: Solve as many problems or subproblems as you can in the given time. You
should show all your work in order to get full or partial credit. You may write on the back
of pages and staple additional pages if you run out of space. I recommend first working on
whichever problems you know how to solve before spending time on the trickier ones. The
raw scores will be curved and you do not necessarily need to solve all the problems to get
a good grade. Good luck!!

Problem 1. (20 pts / 100) Consider the following ODE for a function y(t):

2t− y(t) + 2y(t)y′(t)− ty′(t) = 0.

Find the general solution for y(t). Your answer should involve one arbitrary constant and
may be left in implicit form.

Solution 1. Notice that this ODE is neither linear nor separable. Let’s check if it’s exact.
We can write this in the form

M(t, y) +N(t, y)y′ = 0,

where M(t, y) = 2t− y and N(t, y) = 2y − t. Then we have

∂yM(t, y) = −1

∂tN(t, y) = −1.

Since these agree, the ODE satisfies the condition to be closed, and hence it is exact (note
that M and N are continuous for all t, y, so no pathologies about “holes” can arise). This
means there exists some function ψ(t, y) such that ∂tψ = M and ∂yψ = N . Therefore, by
the chain rule the ODE can be rewritten as

d

dt
ψ(t, y) = 0,

and hence the solution is simply ψ(t, y) = C for C an arbitrary constant. In order to find
ψ(t, y), we can integrate both sides of the equation ∂tψ = M = 2t − y with respect to t,
holding y fixed, to get

ψ(t, y) = t2 − ty + h(y).

Note that the usual constant of integration is instead a function h(t) of y, since ψ can be
any function whose partial derivative with respect to t is M . Taking the partial derivative
with respect to y, the equation ∂yψ = N becomes

−t+ h′(y) = 2y − t.
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Luckily, −t on both sides cancels, leaving h′(y) = 2y (of course this is not really luck;
exactness precisely guarantees that this will happen). We can therefore take h(y) = y2

(we could also add a constant, but there’s no need since we could just absorb it into the
constant C). In conclusion, the solutions to this ODE are implicitly given by

ψ(t, y) = t2 − ty + y2 = C.

Incidentally, what does this mean geometrically? Since ψ(t, y) is a quadratic function in
two variables, we should expect the solutions to be conic sections (i.e. parabolas, circles,
ellipses, or degenerate versions of these such as lines or points), and they should fill out
every point in the (t, y) plane and never cross each other. Indeed, we can write

t2 − ty + y2 = 1
4(y + t)2 + 3

4(y − t)2

(if you’ve taken a multivariable calculus class with linear algebra you should know how to
write any quadratic form in this “diagonal” form, otherwise don’t worry about it). This
means that most of the solutions are ellipses centered at the origin and rotated by 45
degrees, plus when C = 0 we get a point at the origin. Technically these curves aren’t
globally defined functions y(t) since they don’t pass the vertical line test, but they still
make sense as solutions if we think of t and y on equal footing.

Problem 2. (1) (10 pts / 100) Find the general solution to the ODE

y′(t) + y(t) = et.

Your answer should involve one arbitrary constant.
(2) (10 pts / 100) Find the solution to the initial value problem{

y′(t) + ety(t) = 1

y(t0) = y0.

You may leave your answer in the form of a definite integral (e.g. something like∫ s=t
s=t0

s17 sin(s)ds). Hint: you may encounter the function exp(et), which is perfectly
fine.

Solution 2. (1) This is a first order linear ODE, so we can solve it using the method of
integrating factors. Multiply both sides by µ(t) for an as yet undetermined function
µ(t). We get

y′(t)µ(t) + y(t)µ(t) = etµ(t).

We want to write the left hand side as d
dt(yµ) and therefore we want

y′µ+ yµ′ = y′µ+ yµ,

i.e. we want

µ′ = µ,

so we can take µ(t) = et. Then the ODE can be rewitten as

d

dt
(yet) = e2t,
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and integrating both sides with respect to t gives

yet = (1/2)e2t + C,

i.e.

y(t) = 1/2et + C−t.

(2) Similarly, we multiply the ODE by an as yet undetermined function µ(t) to obtain

y′(t)µ(t) + ety(t)µ(t) = µ(t),

and we seek µ(t) such that y′µ+ µ′y = y′µ+ etyµ, so we want µ′ = etµ. This is a
separable ODE, so we can write

dµ

µ
= et

and integrate both sides to obtain

ln |µ| = et + C.

Since we just need a single integrating factor, we can take µ(t) = exp(et). Therefore
the ODE can we written as

d

dt
(y exp(et)) = exp(et).

Integrating both sides from t0 to t, applying the fundamental theorem of calculus
and using a dummy variable s, we obtain

y(t) exp(et)− y0 exp(et0) =

∫ s=t

s=t0

exp(es)ds,

i.e.

y(t) = exp(−et)
(∫ s=t

s=t0

exp(es)ds+ y0 exp(et0)

)
Problem 3. (12 pts / 100) Consider the initial value problem{

y′(t) = (1 + y(t))2

y(0) = y0.

Find the solution, and state the maximal interval for t on which the solution is defined.
(For example, (−∞,∞) would mean the solution is defined for all t). Your answer may
depend on y0. Hint: does y(t) have a vertical asymptote? Does it occur for t < 0 or t > 0?
What happens if y0 = −1?

Solution 3. Notice that this ODE says that y′(t) is even greater than y2, and we’ve seen
that the explosion equation y′ = y2 reaches a singularity in finite time, so we should expect
the same for this ODE. Assuming y 6= −1, we can separate variables to write it as

dy

(1 + y)2
= dt,
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and integrate both sides to obtain

−1

1 + y
= t+ C.

Here we can plug in the initial condition to obtain

−1/(1 + y0) = C.

Solving for y(t), we obtain

y(t) =
1

1
1+y0

− t
− 1.

Now, what about if y = −1? We can easily see that y(t) ≡ −1 is an equilibrium solution.
That means that all other solutions stay either above y = −1 or below y = −1. For any
non-equilibrium solution, a singularity occurs when t = 1/(1 + y0). If y0 > −1, this occurs
for positive t, and the solution stops being defined at that moment. For y0 < −1, the
singularity occurs for negative t. Therefore we have that the maximal interval containing
t = 0 on which the solution is defined is (−∞,∞) if y0 = −1, (−∞, 1/(1+y0)) for y0 > −1,
and (1/(1 + y0),∞) for y0 < −1.

Problem 4. (1) (14 pts / 100) Find the general solution to the ODE

y′′(t) + y′(t) + y(t) = 0.

Your answer should be a real-valued function and should involve two arbitrary
constants.

(2) (14 pts / 100) Find the general solution to the ODE

y′′(t)− 2y′(t) + y(t) = 0.

Your answer should be a real-valued function and should involve two arbitrary
constants.

Solution 4. (1) If we make the ansatz y(t) = ert, we can plug this into the ODE and
find that r must satisfy the characteristic equation

r2 + r + 1 = 0.

This gives roots

r =
−1± i

√
3

2
,

and this corresponds to two complex valued solutions

e−t/2±i
√
3t/2 = e−t/2(cos(

√
3t/2)± i sin(

√
3t/2)).

Using the principle of superposition, we’ve seen that the real and imaginary parts
of either of these solutions give a fundamental set of solutions:

y1(t) = e−t/2 cos(
√

3t/2)

y2(t) = e−t/2 sin(
√

3t/2).
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Finally, the general solution is given by

y(t) = C1e
−t/2 cos(

√
3t/2) + C2e

−t/2 sin(
√

3t/2).

(2) Similarly, the characteristic equation is r2 − 2r + 1, which has r = 1 as a repeated
root. In this situation we have a fundamental set of solutions given by

y1(t) = et

y2(t) = tet,

and the general solution is given by

y(t) = C1e
t + C2te

t.

By the way, remember that one way to realize that the second solution should be
tet is to notice that since Cet is a solution, perhaps v(t)et is a reasonable guess for
another solution. The idea is that we try to allow the constant C to vary, giving a
function v(t). This method of finding a second solution is sometimes called variation
of parameters. If we plug the ansatz v(t)et into the ODE, we can easily solve for
v(t) and arrive at the general solution.

Problem 5. (1) (6 pts / 100) Consider the autonomous ODE given by

y′(t) = −y3 + 7y2 − 10y = 0.

Find the equilibrium points and classify them as stable, unstable, or semistable.
(2) (8 pts / 100) Consider the same ODE as in part (a), now with the initial condition

y(0) = y0. For which y0 (if any) does there exist some t ∈ (0,∞) such that
y(t) = 1

2y0?
(3) (6 pts / 100) Give an example of an autonomous ODE of the form y′(t) = F (y)

which has unstable equilibria at y = 1 and y = 2 and a semistable equilibrium at
y = 3. Hint: your ODE may also have additional equilibria.

Solution 5. (1) Let’s write the ODE as y′(t) = F (y), where

F (y) = −y3 + 7y2 − 10y = −y(y − 2)(y − 5).

Then the equilibria occur precisely when F (y) = 0, i.e. for y = 0, 2, 5. To determine
what types of equilibria occur it’s very helpful to draw the slope field. Basically,
since F (y) flips from positive to negative at 0, 0 is a stable equilibrium. Since F (y)
flips from negative to positive at 2, 2 is an unstable equilibrium. Since F (y) slips
from positive to negative at 5, 5 is a stable equilibrium.

(2) For y0 < 0 the function y(t) is increasing and asymptotically approaches 0, so it
will eventually reach y0/2. For y0 = 0 we have y(t) = 0 = y0/2 for all t. For
0 < y0 < 2, the function y(t) is decreasing and asymptotically approaches 0, so it
will eventually reach y0/2. For 2 ≤ y0 ≤ 5 the function y(t) is nondecreasing, so can
never reach y0/2. For y0 > 5, the function y(t) is decreasing and asymptotically
approaches 5. Therefore it can reach y0/2 provided y0 > 10. In summary, the
condition occurs for y0 ∈ (−∞, 2) ∪ (10,∞).
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(3) Basically we can take any function F (y) which vanishes for y = 1, 2, 3, flips from
negative to positive at 1 and 2, and doesn’t change signs at y = 3. For example,
we could take F (y) = (y − 1)(y − 1.5)(y − 2)(y − 3)2.


