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Section 4.1: 9, 10, 15

9. We have f1(t) = 2t− 3, f2(t) = t2 + 1, f3(t) = 2t2 − t, and f4(t) = t2 + t + 1. If these
functions are linearly dependent, then there exists a set of integers k1, k2, k3, k4 ∈ Z
such that

0 = k1f1 + k2f2 + k3f3 + k4f4 = k1(2t− 3) + k2(t
2 + 1) + k3(2t

2 − t) + k4(t
2 + t+ 1)

We can group terms and observe that −3k1+k2+k4+(2k1−k3+k4)t+(k2+2k3+k4)t
2 =

0. For this expression to hold for all t, we must have all the coefficients be 0:

−3k1 + k2 + k4 = 0

2k1 − k3 + k4 = 0

k2 + 2k3 + k4 = 0

This is a system of three linear equations with four unknowns, so it is underconstrained
and we must have one free parameter. In particular, this means that the given functions
are linearly dependent. We are asked to find a linear relation among them, so we
can solve the system and find that k1 = −2

7
k4, k2 = −13

7
k4, k3 = 3

7
k4, and k4 is a free

parameter. Taking k4 = 1 gives one possible solution:

k1 = −2

7
, k2 = −13

7
, k3 =

3

7
, k4 = 1

10. This problem is near identical to the previous one, with a slight modification to f2.
Following the same procedure, we find that it yields four equations for our four param-
eters, indicating that the system is likely linearly independent. However, we can also
see this from the Wronskian of the system of functions:

W (f1, f2, f3, f4) =

∣∣∣∣∣∣∣∣
2t− 3 t3 + 1 2t2 − t t2 + t+ 1

2 3t2 4t− 1 2t+ 1
0 6t 4 2
0 6 0 0

∣∣∣∣∣∣∣∣ = 156 6= 0

Therefore, this is a linearly independent system of functions.

15. We are given the ODE xy′′′−y′′ = 0 and the solutions y1 = 1, y2 = x, y3 = x3. Verifying
that they satisfy the equation is simple:

1 y′′′ = y′′ = 0 so x(0)− 0 = 0 X

2 y′′′ = y′′ = 0 so x(0)− 0 = 0 X

3 y′′ = 6x, y′′′ = 6, so we have x(6)− 6x = 0 X

Then we can compute the Wronskian:

W (y1, y2, y3) =

∣∣∣∣∣∣
1 x x3

0 1 3x2

0 0 6x

∣∣∣∣∣∣ = 6x
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Section 4.2: 1, 2, 5, 8, 10, 11, 14, 15, 21

1. We want to write z = 1+i = Reiθ. If z = a+bi, then R = |z| =
√
a2 + b2 =

√
12 + 12 =√

2 and θ = arctan(b/a) = π/4 + 2πn, where n ∈ Z because tan is 2π periodic, so we
have:

z = 1 + i =
√

2ei(
π
4
+2πn), n ∈ Z

2. Following the same procedure, we find that R = 2 and θ = 2π/3 + 2πn, so we have:

z = −1 + i
√

3 = 2ei(
2π
3
+2πn), n ∈ Z

5. This is the same procedure again:

z = 1− i
√

3 = 2ei(
11π
6

+2πn), n ∈ Z

8. We want to find the square roots of 1− i. To do this, we first express 1− i in polar form

following the method of the previous three questions: 1− i =
√

2ei(−
pi
4
+2πn). Then we

can take the root: (√
2ei(−

π
4
+2πn)

)1/2
= 21/4ei(−

π
8
+πn), n ∈ {0, 1}

Our two roots are then

(1− i)1/2 = 21/4
(

cos
(π

8

)
− i sin

(π
8

))
, 21/4

(
cos

(
7π

8

)
+ i sin

(
7π

8

))
10. We can follow the same procedure as the previous question(

2
(

cos
(π

3

)
+ i sin

(π
3

)))1/2
=
(
2ei

π
3

)1/2
=
√

2
(

cos
(π

6
+ nπ

)
+ i sin

(π
6

+ nπ
))

=

√
3

2
+ i

1√
2
, −
√

3

2
− i 1√

2

11. We have the equation y′′′−y′′−y′+y = 0, and assuming a general form of the solution
y = ert, we get the characteristic equation r3−r2−r+1 = (r2−1)(r−1) = 0, which has
roots r = ±1, where the root +1 has multiplicity 2. This yields the general solution:

y = c1e
t + c2te

t + c3e
−t

14. The equation y(4) − 4y′′′ + 4y′′ = 0 yields the characteristic equation r4 − 4r3 + 4r2 =
r2(r − 2)2 = 0 which has roots r = 0, 2 both of which have multiplicity 2. The general
solution is:

y = c1 + c2t+ c3e
2t + c4te

2t

2
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15. The equation y(6) + y = 0 has the characteristic equation r6 + 1 = 0. This is less
straightforward to solve, but we can recall the method from problems 8 and 10 from
this section to find the roots. Namely, expressing −1 = ei(π+2πn) in polar form, we have

r =
(
ei(π+2πn)

)1/6
= ei(

π
6
+πn

3 ) =

√
3

2
± i

2
, −
√

3

2
± i

2
, ±i

Then the general solution is a superposition of the solutions that correspond to these
roots and noting that for a root that takes the form r = λ+iµ, y = cert = c1e

λt cos(µt)+
c2e

λt sin(µt). Then our general solution is

y = e
√
3

2
t

(
c1 cos

t

2
+ c2 sin

t

2

)
+ e−

√
3

2
t

(
c3 cos

t

2
+ c4 sin

t

2

)
+ c5 cos (t) + c6 sin (t)

21. The equation y(8) + 8y(4) + 16y = 0 yields the characteristic equation r8 + 8r4 + 16 =
(r4 + 4)2 = 0, which has four roots of multiplicity 2:

r = 41/4ei(
π
4
+πn

2 ) =
√

2

(√
2

2
± i
√

2

2

)
,
√

2

(
−
√

2

2
± i
√

2

2

)
= 1± i,−1± i

Then we can read off the general form of the solution in the same way as the previous
problem (noting that we have repeated roots):

y = et
[
(c1 + c2t) cos t+ (c3 + c4t) sin t

]
+ e−t

[
(c5 + c6t) cos t+ (c7 + c8t) sin t

]
Section 4.3: 1, 2, 6

1. We have the differential equation y′′′−y′′−y′+y = 2e−t+3. Looking to the homogeneous
part first, we can recognize that this is the same problem as 4.2, question 11, and just
cite that result. As such, we have yH = c1e

t + c2te
t + c3e

−t. For the particular solution,
we can split up the right hand side of the equation into the two terms and solve for the
coefficients as independent equations. Namely, we have y′′′ − y′′ − y′ + y = 2e−t and
y′′′ − y′′ − y′ + y = 3. The first equation points to a solution of the form yp,1 = c4te

−t,
where we have a factor of t multiplying the exponential because -1 was a root of our
characteristic equation. Then we can plug this into the ODE, compute the derivatives,
and solve for c4:

e−t(3c4 + 2c4− c4) + te−t(−c4− c4 + c4 + c4) = 2e−t =⇒ 3c4 + 2c4− c4 = 2 =⇒ c4 =
1

2

We can solve for the second part of the particular solution easily because it is just a
constant and we get yp,2 = 3. Then our general solution for the ODE is:

y = yH + yp,1 + yp,2 = c1e
t + c2te

t + c3e
−t +

1

2
te−t + 3

3
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2. This problem requires the same approach as the previous, but unfortunately, we did not
already solve for the homogeneous solution, so we can’t just cite the result. Luckily, the
characteristic equation is simple r4−1 = (r2−1)(r2+1) = (r+1)(r−1)(r+i)(r−i) = 0,
so we have roots r = ±1,±i. Then our homogeneous solution is yH = c1e

−t + c2e
t +

c3 cos t + c4 sin t. As before, we can split the inhomogeneous part into two terms and
solve them independently. The first term is again simple, and assuming the form
yp,1 = c5t, we find that c5 = −3. The second part follows after a little bit of algebra,
assuming yp,2 = c6t cos t+ c7t cos t (because i is a root of our characteristic equation):

4c6 sin t− 4c7 cos t = cos t =⇒ c6 = 0, −4c7 = 1 =⇒ c7 = −1

4

This means our general solution is:

y = yH + yp,1 + yp,2 = c1e
−t + c2e

t + c3 cos t+ c4 sin t− 3t− 1

4
t sin t

6. We have y(4) + 2y′′ + y = 3 + cos 2t. Solving the homogeneous equation gives the
characteristic polynomial r4 + 2r2 + 1 = (r + i)2(r − i)2 = 0, so we have r = ±i with
multiplicity 2. Then the homogenous solution is yH = c1 cos t + c2 sin t + c3t cos t +
c4t sin t. Solving the particular equation, the first term is again simple and is yp,1 = 3.
The second term requires a bit of algebra again, assuming yp,2 = c6 cos 2t + c7 sin 2t.
We find that 16c7 − 8c7 + c7 = 0, so c7 = 0 and 16c6 − 8c6 + c6 = 1, so c6 = 1/9. Then
the general solution is:

y = yH + yp,1 + yp,2 = c1 cos t+ c2 sin t+ c3t cos t+ c4t sin t+ 3 +
1

9
cos 2t
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