MATH 2030 ODE: Problem Set 11 Solutions

Daiki Tagami
May 2020

List of Problems:
e §7.5: 1,11,12,16
e §7.6: 1,9
e §7.8: 1,5

* Python codes were used to create direction field and trajectories of the system.
The codes are included in the appendix section at the end.

Chapter 7.5

Problem 1

= (3 )
(a)

The first step that you take in solving a system of linear equations is to find the
eigenvalues and eigenvectors of the matrix.
Let r and £ be the eigenvalue and eigenvector of the matrix:

‘?GT _2_37”:(377’)(7277’)+4
=r2—r—6+4
=r-2)(r+1)=0

=>r=—1rp=2
For r; = —1, the eigenvector can be determined by:

G DE)-0) == ()



For ro = 2, the eigenvector can be determined by:

b DE)-6) ~e=0)

The fundamental set of solutions of the equation is:

xM(t) = (;) e !, x@ () G) o2t

Therefore, the general solution to this problem is:

X=c <;) et + C2 <?) th

where c¢1, co are constants.

lim e ' =0, lim e* =0
t—o0 t—o00

Therefore, as t — 0o, the solution approaches zero when ¢y = 0, and the solution
approaches infinite when co # 0.

(b)
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This plot shows the direction field for the system.



The graph shows the plot with initial conditions (1, 1), (=1, —1),(2,—2)
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Problem 11
1 1 2
!
x=11 2 1]|x
2 1 1

Find the eigenvalue and eigenvector of this matrix:

1—r 1 2

2—r 1 1 1 1 2—r
1 2—r 1 |=(1-7r) — +2
) o, ‘1 17 '2 1—7«‘ ‘2 1
=1-7[Q-r2-r)—1]—-[(1—7)—2]+2[1—2(2—7)]
=—(r—1(r+1)(r—-4)=0
:>’r‘1:1,’l“2:—1,7“3:4

For r1 = 1, the eigenvector can be determined by:

0 1 2\ /& 0 1
11 1| |&]=(0] =eW=[-=2
2 1 0/ \& 0 1



For ro = —1, the eigenvector can be determined by:

2 1 2\ /& 0 1
13 1|[a]l=(0] =2e@={o0
2 1 2] \g 0 ~1

For r3 = 4, the eigenvector can be determined by:

-3 1 2\ /& 0 1
1 -2 1 Ll=|0] =&®=|[1
2 1 -3/ \g 0 1

The fundamental set of solutions of the equation is:

1 1 1
M)y = -21|¢, xPDy=10 |e?, x )y =[1]e*
1 -1 1

Therefore, the general solution to this problem is:

1 1 1
x=c1 | -2]et+eca| 0 |et+es|1 ett
1 -1 1

where ¢, ¢co, c3 are constants.

Problem 12

2
=12 0
2

W N
%

3—r 2 4
— 2 2 2 2 —r

2 —r 2 :(3—7«)’7” —2’ ‘+4‘

4 9 3_, 2 3-r 4 3—r 4 2
=@B—r)-r(3—r)—4]—2[2(3—1r) — 8] + 4[4 + 4r]
=—(r+13%(r—-8)=0

=r=ro=—1,r3 =38
For ry = ro = —1, the eigenvector can be determined by:

4 2 4 & 0 1 1

2 1 2 &l=10 =M =[—4], e@={o0

4 2 4) \& 0 1 1



For r3 = 8, the eigenvector can be determined by:

-5 2 4\ (& 0 2
2 -8 2 |[&]=[0] =e¥=[1
4 2 5] \& 0 2

The fundamental set of solutions of the equation is:

1 1
xMVt)y=[-4|e, xBDty=10 |et, xB)y=[1]e¥
1 -1 2

Therefore, the general solution to this problem is:

1 1 2
x=c | —4]et+e| 0 |et+es 1]
1 -1 2

where ¢y, o, c3 are constants.

(3 e o)

At first find the general solution of the system of equations. Then, find the
exact value of the constants from the given initial conditions.
Determine the eigenvalues and eigenvectors of the matrix:

Problem 16

-2 -7 1
-5 4—r

—(=2—1)4—7)+5
=(r=3)(r+1)=0
=r=3,rp=-1

When r; = 3, the eigenvector will be:

(G )E)-0) -0

When ry = —1, the eigenvector will be:

G 3)(@)-6) =<-()

Therefore, the general solution will be:

X=0C (é) et +co (1) et



From the initial condition, we have:

2(3) ()= ()

By solving this system, we get:

1 1
1 = 5702 = 5
The final solution is:
L1\ L, L1 s
x—2<1)e +2(5)e
lim e =0, lim €% =0
t—o0 t—o0

Since the terms in front of e3 is positive, the solution approaches infinite as
t — 0.

Chapter 7.6
Problem 1

(a)

Find the eigenvalue and eigenvector of the matrix:

=@B-r)(-1-r)+8

3—r -2
4 —1—-r

=2 —2r+5=0
Use the quadratic formula to find the eigenvalue:

2+v4-20
r=--—-
2

=1+

Find the eigenvector of r;1 = 1 + 2¢

(3 2200 = «=(L)

Hint: To find a complex eigenvector, it might be a good idea to set one variable
to be a real number, such as 1 or 2.

To solve this problem, we would use Euler’s formula, which is e'* = cosz +
isinz.



W42t _ ot <1 i l) (cos 2t + isin 2t)

o cos 2t 4t sin 2¢
= ¢ \cos2t + sin 2t Y€\ gin 2t — cos 2t

Since we don’t want to have complex value in our solution, we can adjust the
constants to let the final solution in terms of real-valued functions.
The final solution is:

% — oot cos 2t Lol sin 2¢
= A€\ cos 2t + sin 2t ©2€ \ sin 2t — cos 2t

Here, ¢y, co are constants like usual.

(b)

lime! = oo
t—

and cos 2t, sin 2t don’t approach to zero as t — 00, so the solution approaches
infinite as t — oo.

Direction field
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This plot shows the direction field for the system



The graph shows the plot with initial conditions (1, 1), (=1, —1),(2,—2)
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Problem 9

- (t Fn o ()

At first, find the general solution of the given system of equations. Then, find
the constant of the solution from the given initial conditions.

=(1-r)(-3-7)+5

1—7r -5
1 -3 -

=r’+2r+2=0

Use the quadratic formula to find the roots of the characteristic equation.

-2+ 4 -

r= 78 =—-1+£1
2

Find the eigenvector when r = —1 + 1.

(=) ©)-0) - e )



gWel=1Hit — o=t (2 _1'— Z> (cost + isint)

_¢ {2cost —sint . _t {cost+2sint
=e +te .
cost sint

Since we don’t want to have complex value in our solution, we can adjust
the constants to let the final solution in terms of real-valued functions.
The general solution is:

_¢ (2cost —sint _¢ {cost 4+ 2sint
X = c1e + coe .
cost sint

Att =0, et = 1,cost = 1,sint = 0. Substitute ¢ = 0 to the general
solution and find the constants depending on the initial condition:

2 1 1
&1 (1) + 2 (0) = (1> = cit=1, co=-1

Substitute this to the general formula found before:

_¢ (2cost —sint _¢ [cost+ 2sint
X=e —e .
cost sint
= et cost — 3sint
o cost — 3sint

lim e " =0, limcost<1, limsint<1
t—o0 t—o0 t—o0

Therefore, the solution approaches zero as t — oo.

Chapter 7.8

Problem 1



(a)

This plot shows the direction field for the system
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(b)
The direction field shows that the solution approaches infinite as t — oco. We
will also be using the analytic solution determined from (c) to verify this fact.

(c)

As in the previous section, find the eigenvalue of the matrix:

=@B-r)(-1-r)+4

3—r —4
1 —1—r

=(r—-12=0 = rp=rp=1

Find the eigenvector corresponding to r = 1:

C Q-6 ~e-0

Here, we are able to obtain 1 solution, but we need a second linearly independent
solution to find a fundamental set of solutions to this problem.
Substitute x = &te! +net to the problem. Here, & and 7 are constant vectors.

x' = gte' + (€ + m)e’
= A(&te! + net)

Here, A is the original matrix that is given by the problem. By comparing
the coefficients on &te! and met, we get the following equations:

(A-Dg=0 (A-Dn=¢

By observing these equations, £ is the eigenvector of A, which was defined
from the previous part. So we have the following equation:

G2 -0)

Thus, we have: 71 — 2, =1
(1
=0

This implies that:
The general form of the solution will be:

o () =[() )

where ¢, co are constants. Since lim;_, o e/ = 0o, the solution approaches infi-
nite as t — oo.

11



Problem 5

1 1 1
xX=[2 1 —-1]x
0o -1 1

Find the eigenvalue and eigenvector of this matrix:

1—r 1 1
1—7r -1 2 -1 2 1—r

2 1—r -1 :(1—7“)’ —‘ +'

0 11—y -1 1-r 0 1—r 0 -1
=(1-n[1-r2-1]-21-7r)-2
=—(r+1)(r—-22%=0

:>T1:71, rog =713 =2

Find the eigenvalue when r; = —1:
2 1 1 & 0 -3
2 2 -1|[&]=[0] =eW=|14
0 -1 2 & 0 2

Find the eigenvalue when ro = r3 = 2:

-1 1 1\ /&4 0 0
2 -1 1| [&]l =0 =2e@=(1
0 -1 -1/ \& 0 ~1

Since there is only one eigenvector that corresponds to » = 2, we must find
a second linearly independent solution.

Let x = £te?! 4+ ne?, where & and 7 are constant vectors. Substitute this to
the original problem:

x| = 26te® 4+ (2n + &)
= A(&te?t + ne?)
By comparing the coefficients on te?* and e?!, we get the following equations:

(A-2D)E=0 (A-2Dm=¢

From observing these equations, £ is the eigenvector obtained from the previous
part.

1 1 1 m 0
0 -1 -1/ \n; 1

12



By solving this, we get the following solution:
1
n=10
1

Overall, the general form of the solution will be:

-3 0
x=c | 4 |et+e]| 1 €2t—|—C3
2 -1
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Appendix: Python codes to reproduce the plots

Direction field

The following code was used to plot the direction field of §7.5.1(b). The plots
from other problems were created by changing the formula inside func ode(t,x)
to create the plots. Feel free to change the x and y values to observe what
happens for larger/smaller x and y values.

import numpy as np
import matplotlib.pyplot as plt
#matplotlib inline

W N

> def func_ode(t,x):

6 dxldt = 3 * x[e] - 2 * x[1]

7 dx2dt = 2 * x[e] - 2 * x[1]

3 return np.stack([dx1ldt, dx2dt], axis=e)

;5 X, Y = np.meshgrid(np.linspace(-15, 15, 20),
11 np.linspace(-15, 15, 20))

13 X, Y = X.flatten(), Y.flatten()
15 dydt = func_ode(None, [X, Y])

17 fig = plt.figure(figsize=(8,6))

18 axes=tig.add subplot(1,1,1)

19 axes.quiver(X, Y, dydt[e], dydt[1], color="blue')
20 axes.set xlim(-10,10)

21 axes.set ylim(-10,10)

22 axes.set xlabel('x1")

22 axes.set ylabel('x2")

24 axes.set title('Direction field")

25 plt.show()

14



Plots of several solutions

The following code was used to create the plot of the solutions. The initial condi-
tions were given as (1,1), (-1,-1) and (2,-2), but they can be changed by changing
the elements in x0 list. The function inside func ode(t,x) must be changed to
create the plot for the problem. Here, it shows the code for §7.5.1(b). Feel free
to change the x, y and t value to observe what happens for larger /smaller x, y
and t values.

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import solve ivp
4 Zmatplotlib inline

W N

6 def func_ode(t,x):

7 dxldt = 3 * x[e] - 2 * x[1]

8 dx2dt = 2 * x[e] - 2 * x[1]

return np.stack([dx1ldt, dx2dt], axis=e)

1 x0 list = np.array([[1,1], [-1,-1], [2,-2]])
12 sol list = []

14 for x@ in x@ list:
15 sol = solve ivp(func _ode, [@, 2], x@, vectorized = True, dense output = True)
16 sol list.append(sol)

18 time = np.arange(e, 2, 0.01)
19 x list =[]

1 for sol in sol list:
22 x_list.append(sol.sol(time))

24 fig, axes = plt.subplots(2, 1, figsize=(12,12))

26 for x in x list:
27 axes[0].plot(time, x[0])
28 axes[1].plot(time, x[1])

20 axes[@].set xlabel('t")
21 axes[@].set ylabel('x0")
32 axes[@].set ylim(-30,30)

_ axes[1].set xlabel('t")

35 axes[1].set ylabel('x1")
36 axes[1l].set ylim(-30,30)
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