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Let’s begin with an example.

Example 0.1. Solve the ODE

y′(t) = y2/3, y(0) = 0.

Well, this should be pretty straightforward since it’s separable. We can write it as

y−2/3dy = dt.

Integrating both sides, we find

3y1/3 = t + C.

Plugging in the initial condition (0, 0) shows that C must be zero, so we end up with

y =
1

27
t3.

So we’re done, right? But wait a minute. It’s always good to think for a minute if there
are any obvious or trivial solutions to the ODE. In fact, look: y(t) ≡ 0 is another perfectly
good solution to the ODE, and it also satisfies the same initial condition y(0) = 0. Hmm...

The above example should give you pause. When solving examples in class, we’ve
generally been tacitly assuming that the solutions to first order ODE’s are unique once an
initial condition is specified. Graphically, this is why the integral curves in the (t, y) plane
don’t cross each other. Remember, we also used uniqueness to conclude that solutions
cannot cross equilibrium values, but rather can only asymptotically approach them. So if
first order ODE’s don’t have unique solutions, a lot of our intuition has been wrong...

Luckily, there is some order in the universe, thanks to the following classical theorem by
Picard.

Theorem 0.2. Consider the initial value problem

y′(t) = f(t, y), y(t0) = y0.

Assume that f(t, y) and ∂
∂yf(t, y) are continuous functions in a rectangle

R = {(t, y) : a < t < b, c < y < d}
in the (t, y)-plane which contains the point (t0, y0). Then there exists a unique solution
y(t) to the initial value problem, at least for t ∈ [t0 − h, t0 + h] with some small h > 0.
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In other words, if f(t, y) and ∂
∂yf are continuous, then we’re guaranteed to have a

solution and for it to be unique, at least for a short time interval.
Keep in mind that this whole discussion is just for first order ODE’s. Also, remember

that for linear first order ODEs we actually wrote down the formula (in terms of some
integrals) for the solution. If you go back and check the steps we used to arrive at that
formula (using integrating factors), you can see that that formula is the only possible
solution, i.e. it’s the unique solution. So in the linear case, we really didn’t need any fancy
theorem to show us that solutions exist and are unique.

Example 0.3. Let’s return to the previous example. For the ODE y′ = y2/3, we have
f(t, y) = y2/3. Notice that f(t, y) is actually continuous for all t and y. Namely, it doesn’t

even depend on t, whereas the graph of y2/3 looks like a bent ‘V’ shape. It has a sharp
point at the origin, but it doesn’t jump there, so it’s continuous. On the other hand,
∂
∂yf = 2

3y
−1/3 is not even defined for y = 0, let alone continuous. So Picard’s theorem does

not apply here, which we already knew since the uniqueness conclusion is violated.

Philosophically, Picard’s theorem might feel a little bit unsatisfying, since we like to
solve equations rather than just have an abstract theorem telling us that they exist. As
we’ve mentioned a few times in class, this is sort of too much to ask for, since equations
like y′ = y2 − t simply don’t have solutions that can be written in terms of elementary
functions or even integrals of elementary functions. However, Picard does have more to
offer us! Namely, it turns out that if we iteratively set

yn+1(t) := y0 +

∫ t

t0

f(s, yn(s))ds,

(so y1(t) = y0 +
∫ t
t0
f(s, y0) and so on), then the sequence of functions {yn(t)} actually

converges to the solution of the ODE. In order words, as n gets bigger, yn(t) gets closer
and closer to the true solution. This could be useful if we only need an approximate
solution. Also, this sequence is the key mathematical idea used to prove Picard’s theorem,
although the analytical details are beyond the scope of this class.


