
Midterm 2
Ordinary differential equations

Columbia University Spring 2020
Instructor: Kyler Siegel

Instructions:

• Please write your answers on blank (unruled) paper, and make them as legible as
possible. You do not need to print out the exam. You must make your work and
solutions clear for full credit. Please include all scratch work.

• Upload your solution to each problem separately, preferably as a PDF of sufficiently
high resolution. You may use a scanner or a camera / smartphone. If you use a
smartphone, we recommend using a scanner app. If your writing is not legible we may
not be able to give credit (even if it is due only to poor scanning). If you absolutely
cannot manage a PDF, please use JPG or other standard image format. Please try to
avoid formats such as docx.

• Solve as many problems of the following problems as you can in the allotted time,
which is one hour and fifteen minutes. Note that you are given a total of 100 minutes
to allow for extra time to upload your solutions. You may use more than 75 minutes
to work on the exam but it is your responsibility to submit your solutions within the
100 minute time window.

• I recommend first solving the problems you are most comfortable with before moving
on to the more challenging ones. Note that the problems are not ordered by level of
difficulty or topic.

• Please do not under any circumstances share information about this exam with other
students, even after the exam window has ended (in case there are makeup exams).
Inquiring about the exam with other students or giving information about the exam to
other students is considered a breach of the honor code. Note that this includes even
information about the difficulty level of the exam or broad information about what
topics are covered. Suspected cases of copying or otherwise cheating will be taken very
seriously.

• You may not use any electronic devices to complete the exam. You are not allowed to
use any textbook, calculator, pre-written notes, the internet, etc, to aid your solutions.
You also may not consult with anyone (whether or not they are a student in this course)
during the exam. You are expected to follow the honor code.

• The exams will be graded on a curve. Therefore the raw score is not important, and
you do not necessarily need to solve every problem to achieve a good grade. Just do
your best!

• You may freely use the restroom during the exam.

• At the top of your exam, please write your name, uni, the following sentence: “I have
adhered to all of the above rules.”, and write your signature.

• Good luck!!



Question: 1 2 3 4 Total

Points: 25 30 10 35 100

Score:
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1. (25 points) Consider the ODE t2y′′(t) + 2ty′(t) + ay(t) = 0, where a is a real-valued constant. Find the
general solution, valid for both t > 0 and t < 0. Note: your answer should depend on a, and there could be
several cases to consider.

Solution: This is an Euler equation. The indicial equation is r(r− 1) + 2r+ a = r2 + r+ a, which has

roots −1±
√
1−4a

2 .

Firstly, suppose that we have 1 − 4a > 0, i.e. a < 1/4. In this case we have two distinct real roots

r1 = −1+
√
1−4a

2 and r2 = −1−
√
1−4a

2 , and the general solution is

y(t) = C1|t|
−1+

√
1−4a

2 + C2|t|
−1−

√
1−4a

2 .

Now suppose that we have 1 − 4a = 0, i.e. a = 1/4. In this case we have a single real repeated root
r1 = r2 = −1/2. The general solution is then

y(t) = C1|t|−1/2 + C2|t|−1/2 ln(|t|).

Finally, suppose that we have 1−4a < 0, i.e. a > 1/4. In this case we have two complex roots which are

complex conjugates, r1 = −1+i
√
4a−1

2 and r2 = −1−i
√
4a−1

2 . We can write these as α± iβ with α = −1/2

and β =
√

4a− 1/2. The corresponding real-valued general solution is therefore

y(t) = C1|t|−1/2 cos
(√

4a−1
2 ln(|t|)

)
+ C2|t|−1/2 sin

(√
4a−1
2 ln(|t|)

)
.
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2. (I) (10 points) Find two linearly independent solutions to the ODE

y(5)(t)− 32y(t) = 0.

Solution:

This is a constant coefficient ODE, so we make the ansatz y(t) = ert, and we arrive at the charac-
teristic equation

r5 − 32 = 0.

This equation has five roots, each given by 2 times a fifth root of unity. Namely, we have rk =
2e2πik/5 for k = 1, 2, 3, 4, 5. For k = 5, we get simply 2, and the corresponding solution

f(t) = e2t.

For k = 1, we get
2e2πi/5 = 2 (cos(2π/5) + i sin(2π/5)) = α+ iβ

for α = 2 cos(2π/5) and β = 2 sin(2π/5).

Recall that a complex valued solution e(α+iβ)t can be written as eαt (cos(βt) + i sin(βt)). Taking
its real and imaginary parts, we get real-valued solutions eαt cos(βt) and eαt sin(βt). Taking just
the cosine solution and applying this to our α and β above, we get a solution

g(t) = e2 cos(2π/5)t cos(2 sin(2π/5)t).

It is easy to see that f(t) and g(t) are linearly independent. Note: there are many other possible
answers to this problem, and it’s even possible to find five linearly independent solutions, although
the problem only asks for two.

(II) (10 points) Find the general solution to the ODE

y(7)(t)− 8y(6)(t) + 20y(5)(t)− 16y(4)(t) = 0.

Solution:

In this case the characteristic equation is

r7 − 8r6 + 20r5 − 16r4 = 0,
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i.e.
r4(r3 − 8r2 + 20r − 16) = 0.

The first four roots are r1 = r2 = r3 = r4 = 0. To find another root, we can seek rational roots
using the rational roots theorem (note: this method requires some luck, since a typical polynomial
might not have any rational roots, but at any rate this is one of the main methods we covered in
class). By a little trial and error, one finds that r = 2 is another root. We then factor

r3 − 8r2 + 20r − 16 = (r − 2)(r2 − 6r + 8) = (r − 2)(r − 2)(r − 4).

So we have the roots r5 = r6 = 2 and r7 = 4, and this gives the general solution

y(t) = C1 + C2t+ C3t
2 + C4t

3 + C5e
2t + C6te

2t + C7e
4t.

(III) (10 points) Find the general solution to the ODE

y′′(t)− 2y′(t) = t+ tet + te2t + (t2 + 3) sin(3t).

You may leave your answer in terms of a finite number of undetermined coefficients, e.g. y(t) =
A sin(t) +Bet.

Solution: The homogenous equation has characteristic polynomial r2−2r, which has roots r1 = 0
and r2 = 2, corresponding to general solution C1 +C2e

2t. We concoct an ansatz for each summand
of the inhomogeneity.

Firstly t is a polynomial of degree 1. Since 0 is a root of the characteristic polynomial, we also need
to add an extra t, giving t(At+B) as the corresponding ansatz.

Next, tet is a polynomial of degree 1 times et. Since 1 is not a root of the characteristic polynomial,
the corresponding ansatz is (Ct+D)et.

We handle te2t similarly, except that 2 is a root of the characteristic polynomial, so we need to add
an extra t, giving t(Et+ F )e2t.

Finally, (t2 + 3) sin(3t) is a degree two polynomial times sin(3t). Since 3i is not a root of the
characteristic polynomial, we don’t need to add any extra factor of t, so the corresponding ansatz
is (Gt2 +Ht+ I) sin(3t) + (Jt2 +Kt+ L) cos(3t).

Overall, the general solution is therefore

y(t) = C1+C2e
2t+t(At+B)+(Ct+D)et+t(Et+F )e2t+(Gt2+Ht+I) sin(3t)+(Jt2+Kt+L) cos(3t).
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Of course it would be extremely tediously to have to solve for all of these coefficients by hand, but
luckily the problem does not require that.
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3. (10 points) Consider the ODE

y(4)(t) + cos(t)y′′(t) + sin(4t)y′(t) + 17y(t) = 0.

Suppose y1(t), y2(t), y3(t), y4(t) are solutions, defined for all t ∈ R, and suppose that we have the initial
conditions

y1(4) = 3, y′1(4) = 0, y′′1 (4) = 0, y
(3)
1 (4) = 0

y2(4) = 0, y′2(4) = a, y′′2 (4) = 0, y
(3)
2 (4) = 2

y3(4) = 0, y′3(4) = 1, y′′3 (4) = 1, y
(3)
3 (4) = 0

y4(4) = 0, y′4(4) = a, y′′4 (4) = 0, y
(3)
4 (4) = a,

where a is a real constant. Do y1(t), y2(t), y3(t), y4(t) together form a fundamental set of solutions? Note:
your answer should depend on a.

Solution:

Notice that the ODE is linear and the functions cos(t), sin(4t), and 17 are continuous for all t. Therefore
y1, y2, y3, y4 form a fundamental set of solutions if and only if their Wronskian is nonzero for all t. The
Wronskian at t = 4 is given by the determinant∣∣∣∣∣∣∣∣

3 0 0 0
0 a 0 2
0 1 1 0
0 a 0 a

∣∣∣∣∣∣∣∣ = 3(a2 − 2a).

So they form a fundamental set unless a = 0 or a = 2.
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4. Consider the ODE
y′′(t)− 2ty′(t)− 2y(t) = 0.

(I) (10 points) Let y(t) be a power series solution of the form y(t) =
∞∑
n=0

ant
n such that y(0) = π and

y′(0) = π. Find a0, a1, a2, a3, a4.

Solution: From the ansatz y(t) =
∞∑
n=0

ant
n we have y′(t) =

∞∑
n=1

annt
n−1 and y′′(t) =

∞∑
n=2

ann(n−

1)tn−2, and the ODE becomes

∞∑
n=2

ann(n− 1)tn−2 − 2t

∞∑
n=1

annt
n−1 − 2

∞∑
n=0

ant
n = 0.

Letting j = n− 2, we can rewrite the first summand as

∞∑
j=0

aj+2(j + 2)(j + 1)tj ,

and hence the the full expression can be written as

∞∑
n=0

an+2(n+ 2)(n+ 1)tn − 2

∞∑
n=1

annt
n − 2

∞∑
n=0

ant
n = 0,

i.e.
∞∑
n=0

(an+2(n+ 2)(n+ 1)− 2ann− 2an) tn = 0.

For this to hold we must have an+2 = 2n+2
(n+2)(n+1)an for all n ≥ 0. The first few equations read:

a2 = 2
2∗1a0

a3 = 4
3∗2a1

a4 = 6
4∗3a2,

and so on. The initial conditions say that we must have a0 = a1 = π. Then the above equations
give

a2 = π

a3 = 2π/3

a4 = a2/2 = π/2.
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(II) (10 points) Now let y(t) be a power series solution of the form y(t) =
∑∞
n=0 ant

n such that y(0) = 1
and y′(0) = 0. Find a100 and a101.

Solution:

This initial condition corresponds to having a0 = 1 and a1 = 0. Let’s write out the first few
recursion equations in more detail:

a2 = 2
2∗1a0

a3 = 4
3∗2a1

a4 = 6
4∗3a2 = 6∗2

4! a0

a5 = 8
5∗4a3 = 8∗4

5! a1

a6 = 10
6∗5a4 = 10∗6∗2

6! a0.

Note that a3 = 2a1/3 = 0, and a5 = 8∗4
5! a1 = 0, and in general all of the odd index terms will be

zero. This shows that a101 = 0.

As for the even index terms, the pattern is

a2k = 2∗6∗10∗···∗(4k−2)
(2k)! .

This is the same as

22k1∗3∗5∗···∗(2k−1)
(2k)! = 22k

2∗4∗6∗···∗(2k) = 22k

22k1∗2∗3∗···∗k = 1
k! .

Therefore we have a100 = 1
50! .

(III) (5 points) In the context of (II), show that y(t) = et
2

. Note: you do not need to give a rigorous proof
but you should be as convincing as possible.

Solution:

From the above, we have

y(t) = 1 + 1
1! t

2 + 1
2! t

4 + 1
3! t

6 + · · ·+ 1
k! t

2k + . . . .

Recall that the Taylor series for et is

et = 1 + 1
1! t+ 1

2! t
2 + 1

3! t
3 + · · ·+ 1

k! t
k + . . . .

Substituting t2 for t, we get

et
2

= 1 + 1
1! t

2 + 1
2! t

4 + 1
3! t

6 + · · ·+ 1
k! t

2k + . . . ,
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which is precisely what we found for y(t).

(IV) (10 points) Now use the method of reduction of order to find the general solution to the ODE. You

may leave your answer in terms of one or more definite integrals, e.g.
∫ t
0
esin(s)ds. Note: you may take

for granted the answer to (III) even if you did not solve it.

Solution:

Denoting our first solution by y1(t) = et
2

, we seek a solution of the form y(t) = u(t)y1(t). We have
y′ = u′y1 + uy′1 and y′′ = u′′y1 + 2u′y′1 + uy′′1 , and hence we need

(u′′y1 + 2u′y′1 + uy′′1 )− 2t(u′y1 + uy′1)− 2(uy1) = 0.

We get some cancellations since we already know that y1 solves the ODE, we this reduces to

u′′y1 + 2u′y′1 − 2tu′y1 = 0.

Since y′1(t) = 2tet
2

, we can write this as

u′′et
2

+ 2u′2tet
2

− 2tet
2

u′ = 0,

or equivalently
u′′ + 4tu′ − 2tu′ = 0,

i.e.
u′′ + 2tu′ = 0.

Putting v(t) := u′(t), this becomes v′(t) + 2tv(t) = 0. This is an easy first order ODE, with

solution v(t) = e−t
2

. Now we integrate to get u(t) =
∫ t
0
e−s

2

ds. Recall from class that this
antiderivative cannot be evaluated explicitly (in fact, it’s the so-called “error function erf(t) up to a

factor of 2/
√
π). At any rate, going back to our initial ansatz, this gives the solution et

2 ∫ t
0
e−s

2

ds.
Combining this with our first solution y1(t), we get the general solution as

y(t) = C1e
t2 + C2e

t2
∫ t

0

e−s
2

ds.
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