
Midterm 1
Ordinary differential equations

Columbia University Spring 2020
Instructor: Kyler Siegel

Instructions:

• Please write your answers in this printed exam. You may use the back of pages
for additional work. You may also use printer paper if you need additional space, but
you must hand in all relevant work. Please turn in all scratch work which is relevant
to your submitted answers.

• Suspected cases of copying or otherwise cheating will be taken very seriously.

• Solve as many problems of the following problems as you can in the allotted time,
which is one hour and fifteen minutes. I recommend first solving the problems you are
most comfortable with before moving on to the more challenging ones. Note that the
problems are not ordered by level of difficulty or topic.

• The exams will be graded on a curve. Therefore the raw score is not important, and
you do not necessarily need to solve every problem to achieve a good grade. Just do
your best!

• Turn off all electronic devices. You may use the restroom if you must, but you may
not take any devices with you.

• Good luck!!

Name:

Uni:



1. (20 points) Find the solution to the initial value problem{
y′(t) + sin(t)y(t) = et

y(3) = 7.

You may leave your answer in the form of a definite integral (e.g. something like
∫ s=t
s=2.5

s17 sin(s)ds).

Solution:

This is a first order linear ODE, so we use the method of integrating factors. Multiplying both sides of
the ODE by µ(t) gives

µ(t)y′(t) + µ(t) sin(t)y(t) = µ(t)et.

We seek µ(t) such that the left hand side is d
dt (µ(t)y(t)), i.e. we want

µ(t)y′(t) + µ(t) sin(t)y(t) = µ(t)y′(t) + µ′(t)y(t),

i.e.
µ′(t)

µ(t)
= sin(t).

This is a separable ODE, and integrating gives ln |µ(t)| = − cos(t)+C. We just need a single integrating
factor, so it suffices to take µ(t) = e− cos(t). Then our original ODE becomes

d
dt (e

− cos(t)y(t)) = e− cos(t)et.

We now replace t with a dummy variable s, and integrate both sides from s = 3 to s = t to obtain

e− cos(t)y(t)− e− cos(3)y(3) =

∫ s=t

s=3

(e− cos(s)es)ds.

We have the initial condition y(3) = 7, so this gives

y(t) =
7e− cos(3) +

∫ s=t
s=3

es−cos(s)ds

e− cos(t)
= ecos(t)

(
7e− cos(3) +

∫ s=t

s=3

es−cos(s)ds

)
.

2. (20 points) Consider the following ODE for a function y(t):

y2ety + 1 + (ety + tyety)y′ = 0.

Find the general solution for y(t). Your answer should involve one arbitrary constant and may be left in
implicit form.

Solution:

Note that this ODE is nonlinear and does not appear to be separable, so our best hope is that it’s exact.
Let’s introduce the notation M(t, y) := y2ety + 1 and N(t, y) := ety + tyety. We check whether the ODE
is closed, i.e. whether ∂

∂yM = ∂
∂tN . We have

∂
∂yM = 2yety + ty2ety
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and
∂
∂tN = yety + yety + ty2ety,

so these do indeed agree. Therefore the ODE is exact, so we seek a function ψ(t, y) such that ∂
∂tψ(t, y) =

M(t, y) and ∂
∂uψ(t, y) = N(t, y). The first equation says

∂
∂tψ = y2ety + 1,

so by integrating both sides with respect to t we obtain

ψ(t, y) = yety + t+ h(y).

Taking the partial derivative of this with respect to y and plugging it into the second equation above,
we obtain

ety + tyety + h′(y) = ety + tyety,

hence it suffices to take h(y) = 0. This gives ψ(t, y) = yety + t, and hence the general solution is given
by

y(t)ety(t) + t = 0.

Note that there is no reasonable way to solve this as an explicit formula for y(t), so we leave it as an
equation describing y(t) implicitly as a function of t.

3. (20 points) Find the solution to the initial value problem
2y′′(t) + 4y′(t) + y(t) = 0

y(0) = 0

y′(0) = 1.

Solution:

After making the ansatz y(t) = ert, plugging this into the ODE and simplifying gives the characteristic
equation

2r2 + 4r + 1 = 0.

The roots are given by
−4±

√
16− 8

4
= −1±

√
2/2. Put r1 = −1 +

√
2/2 and r2 = −1−

√
2/2. These

are real and distinct roots, so the general solution is given by

y(t) = C1e
r1t + C2e

r2t.

In order to satisfy the initial conditions, we need{
C1 + C2 = 0

r1C1 + r2C2 = 1.

Solving by substitution, we get
r1C1 + r2(−C1) = 1,

i.e.
C1 = (r1 − r2)−1 = 1/

√
2,

and hence C2 = −1/
√

2. The solution to the initial value problem is therefore

y(t) = 1√
2
e(−1+

√
2/2)t − 1√

2
e(−1−

√
2/2)t.
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4. (I) (10 points) Consider the autonomous ODE y′ = y sin2(y). Find all equilibrium points and classify
them as stable, unstable, or semistable.

Solution: Equilibrium points occur when y sin2(y) = 0, i.e. when y = kπ for any integer k. Note
that y sin2(y) is always nonnegative when y is positive, and always nonpositive when y is negative.
From this it follows easily (picture the slope field and integral curve diagrams) that 0 is unstable
and kπ is semistable whenever k is a nonzero integer.

(II) (10 points) Consider the autonomous ODE y′(t) = (y−1)3(y−2)4(y3−4y2 +3y), along with the initial
condition y(0) = y0. For each y0, determine lim

t→∞
y(t).

Solution: We have y3− 4y2 + 3y = y(y2− 4y+ 3) = y(y− 1)(y− 3), so the ODE can be rewritten
as

y′ = y(y − 1)4(y − 2)4(y − 3).

By drawing the slope field and the corresponding integral curve plot, we find the following limits:

• limt→∞ y(t) = 0 if y0 < 1

• limt→∞ y(t) = 1 if 1 ≤ y0 < 2

• limt→∞ y(t) = 2 if 2 ≤ y0 < 3

• limt→∞ y(t) = 3 if y0 = 3

• limt→∞ y(t) =∞ if y0 > 3.

For y0 > 3, in fact the solution y(t) has a vertical asymptote, i.e. limt→tM y(t) = ∞ for some
0 < tM <∞ (which depends on y0). Indeed, for large y, y(t) grows even faster than the solution to
the explosion equation y′ = y2, which we’ve seen goes to infinity in finite time. Then the solution
y(t) is only defined for t < tM , after which it breaks down, and hence the limit limt→∞ y(t) is not
defined for y0 > 3.

5. (20 points) Find the general solution to the ODE 4y′′ + 4λy′ + (λ2 + 1)y = 0, where λ is a real-valued
parameter. Describe the behavior of y(t) as t→∞. Note: your answer should depend on λ.

Solution:

The characteristic equation is
4r2 + 4λr + (λ2 + 1) = 0,

which has roots

r =
−4λ±

√
16λ2 − 16(λ2 + 1)

8
=
−4λ± 4i

8
= −λ/2± i/2.

The general solution is then given by

y(t) = C1e
−λt
2 cos(t/2) + C2e

−λt
2 sin(t/2).
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For any λ, there is the trivial solution y(t) ≡ 0. Now consider the nontrivial solutions. When λ > 0, the
solutions are oscillatory with amplitude exponentially decaying, and we have limt→∞ y(t) = 0 for any
C1 and C2. When λ = 0, the general solution is C1 cos(t/2) + C2 sin(t/2). In this case, the solutions
oscillate with period 4π, but with amplitude depending on C1 and C2. For λ < 0, the solutions oscillate
with amplitude increasing exponentially. This means that limt→∞ y(t) is not defined, but we have
limt→∞ |y(t)| =∞.

6. (0 points) Bonus problem for up to 4 extra points - do not attempt unless you are confident with all of
your other answers!

Find the general solution to the ODE y′(t) = y/t+ y2/t2 for t > 0.

Solution: This example is neither linear, separable, nor exact. However, notice that it has an interesting
feature, namely that y/t appears prominently. We make the substitution v(t) := y(t)/t. Then we have
y = vt, and hence y′ = v′t+ v. The our ODE becomes the following ODE having v(t) as its dependent
variable:

v′(t)t+ v(t) = v(t) + v(t)2,

i.e.
v′(t)t = v(t)2.

This ODE is much simpler and is in now in fact separable:

v′(t)

v2(t)
= 1/t,

so we get −1/v(t) = ln(t) + C, and hence v(t) =
−1

ln(t) + C
. This gives

y(t) = tv(t) =
−t

ln(t) + C
.

However, notice that this computation assumed that we have v 6= 0, i.e. y 6= 0. In fact, there is another
solution: y(t) ≡ 0.
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