
LECTURE 1

KYLER SIEGEL

This is a semester long class on ordinary differential equations. Firstly, what is a differ-
ential equation? Roughly speaking, it is any equation (or system of equations) involving
a function (or collection of functions) and its derivatives. The word ordinary means that
there is just one independent variable, often denoted by ‘x’ or ‘t’ and sometimes (but
not always) thought of as ‘time’ in applications. This is in contrast to partial differential
equations, which involve multiple independent variables and hence partial derivatives with
respect to those variables. Examples of ODE’s:

(1)
dy

dx
= x2 + sin(x)

(2)
dy

dx
= x2y + x

(3)
d2y

dx2
+

(
dy

dx

)2

+ sin(x7) = 0

(4) f ′′′(x) + f ′′(x) + 7f ′(x) = 0
(5) ẋ = x2t2,

(6)
dx

dt
= x2 − t

(7)
dx

dt
= f(t, x(t)), x(t0) = x0,

etc. Notice that
dy

dx
, f ′(x), and ẋ are all just different notational conventions for the first

derivative, preferred, by Leibniz, Lagrange, and Newton respectively. The equations (1)
and (2) are first order since they involve only the first derivative, whereas (3) is second
order, (4) is third order, etc. Equations (1) and (2) are linear whereas (3) is not, since it

involves the fancy term

(
dy

dx

)2

(this terminology will come later).

What does it mean to solve an ODE? Simply put, it means finding a function, say y(x),
which satisfies the specified identity. For example, it is easy to check that the function
y(x) = x3/3 − cos(x) solves the first equation. In fact, it should be clear that we can
find y(x) simply by integrating the right hand side. No such simple prescription exists
for the other equations. It seems natural to ask: does a solution exist? If so, is that
solution unique? Perhaps there are two solutions, or three, or infinitely many?. Note that
in example one, we actually have the solution y(x) = x3/3−cos(x)+C for any constant C,
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Figure 1. Direction field for the ODE dx/dt = x/10.

so there are indeed infinitely many solutions. However, if we add the additional constraint
that y(0) = −1, then we must have C = 0 and the solution becomes unique.

ODE’s frequently arise as mathematical models of natural phenomena. Let’s see some
examples.

Example 0.1. (equation of normal reproduction) Consider a population of say fish with
plenty of food. If x(t) is the number of fish at time t, the equation

x′(t) = kx(t)

is the ‘equation of normal reproduction’. Here k > 0 is a constant. This equation says that
the rate of reproduction is proportional to the number of fish. We can get more intuition
by plotting the direction field (a.k.a. slope field) in the (t, x) plane, see Figure 1. This
shows what slope a solution x(t) would need to have at each point. A curve with the
specified slope at each point would constitute the graph of a solution to the given ODE
and is sometimes called an integral curve. We can see roughly how the solution curves
should look by trying to draw them on the grid. We see that if the population starts out
as zero, it will be forever zero, i.e. x(t) ≡ 0 is a solution to the ODE. If the population
starts out positive, it will increase faster and faster. In fact, it could conceivably become
infinity after a finite amount of time, but it’s hard to tell from the direction field. Our plot
also includes negative t and negative x, which make perfect mathematical sense although
a negative number of fish doesn’t have any interpretation in our model.

To get a more quantitative understanding, we can solve the equation explicitly as follows.
Write the equation as

dx

x
= kdt.
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Figure 2. Direction field for the ODE dx/dt = x2/10.

Now we integrate both sides, the right side from t0 to t and the left side from x(t0) to x(t),
obtaining1

ln(x(t)) − ln(x(t0)) = k(t− t0).

By exponentiating both sides, we obtain

x(t) = x(t0)e
k(t−t0)

So indeed, if x(t0) = 0, then x(t) ≡ 0 (i.e. no fish will suddenly appear if we don’t start

with any), whereas for x(t0) > 0, the number of fish at time t is x(t0)e
k(t−t0) which grows

exponentially. Notice that the number of fish never reaches infinity. Also, the number of
fish always doubles after an amount of time equal to td, where ektd = 2, i.e. td = ln(2)/k.
A similar equation (but with k < 0) explains why a radioactive isotope has a ‘half-life’.

Example 0.2. (the explosion equation) Now let’s modify the equation to be

x′ = kx2,

which says that the rate of reproduction is proportional to the number of pairs of fish. How
does this change things? The direction field, shown in Figure 2, looks qualitatively similar
but perhaps grows a bit faster. We can solve this equation using the same trick, rewriting
it as

dx

x2
= kdt

1This step might make you slightly nervous, since in calculus courses one is taught that
dx

dt
is merely a

notation and not an actual fraction. In fact, it turns out that this move is perfectly allowed, since dx and
dt have rigorous mathematical meaning as differential forms. Although these lie beyond the scope of this
course, you can just think the above derivation as a heuristic way of discovering a solution. Whenever a
heuristic is used to find a supposed solution, you should go back and check that the resulting does indeed
satisfy the original ODE, which is usually an easy computation.
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Figure 3. Direction field for the ODE dx/dt = x(5 − x)/10.

and integrating from t0 to t to obtain

−1/x(t) + 1/x(t0) = k(t− t0),

i.e.

x(t) = (1/x(t0) − k(t− t0))
−1 .

Let’s assume for simplicity that t0 = 0 and put x0 = x(0), so we get

x(t) =
x0

1 − ktx0
.

Observe: as t approaches 1/(kx0) from below, x(t) approaches infinity! So the population
reaches infinity in finite time, unlike in the previous example. This illustrates that it is
dangerous to assume that the solutions to an ODE will exist for all t even if the equation
itself exists for all t. Of course it’s hard to imagine a lake with infinitely many fish, but
there are real world situations that are well-modeled by this equation, at least for some
time interval.

Example 0.3. (reproduction equation in the presence of food competition) Now let’s sup-
pose that our fish have to compete for food, so the effective rate of reproduction diminishes
as the number of fish grows. The following ODE attempts to model this:

x′ = (a− bx)x,

where a, b are constants. See Figure 3 for a slope field plot. Now let’s set a = b = 1 for
simplicity, so we get the ‘logistic equation’:

x′ = (1 − x)x.

The first thing to notice is that x(t) ≡ 0 is unsurprisingly a solution, but there is another
constant solution (or ‘equilibrium solution’), namely x(t) ≡ 1. The slope field suggests
that if we start with x(0) between 0 and 1, the number of fish will grow asymptotically to
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one, whereas if we start with x(0) > 1, the number of fish will decrease asymptotically to
one.

Let’s try to verify this explicitly. We write the equation as

dx

(1 − x)x
= dt

and integrate, using that an antiderivative for 1
(1−x)x is ln(x/(1−x)) (try a partial fraction

decomposition) to obtain
x

1 − x
= Cet,

which can be solved for x as

x(t) =
et

C ′ + et
.

Note that constant C ′ is different from C but it makes no difference since they’re both just
arbitrary constants. The important thing is the relationship between C ′ and x(0), which
we find by plugging in t = 0:

x(0) = e0/(C ′ + e0),

i.e.

C ′ = 1/x(0) − 1.

You should convince yourself that for any C ′ such that x(0) is positive, the solution x(t) is
asymptotic to 1 as t approaches infinity, and that it approaches from either below or above
depending on whether x(0) is less than 1 or more than 1.

Example 0.4. (normal reproduction with constant harvesting) Now consider the ODE

x′ = ax− b,

which represents our fish with normal reproduction rate a, but now we harvest them at a
constant rate b (for example we catch fifteen fish per day). We have

dx

ax− b
= dt,

and integrating from 0 to t and putting x0 = x(0), we have

1

a
ln(ax(t) − b) − 1

a
ln(ax0 − b) = t,

i.e.

ln

(
ax− b

ax0 − b

)
= at,

i.e.

ax− b = (ax0 − b)eat,

i.e.

x(t) =
b

a
+ (x0 − b/a)eat.
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Now let’s consider what happens when we plug in rates a = b = 1 and initial population
x0 = 1/2. Then we get the formula

x(t) = 1 − et/2.

Observe: the population of fish reaches zero after finite time, namely when t = ln(2). So if
we harvest too rapidly, the fish will disappear forever!

We end this lecture with one more conceptual question: even if an ODE has a solu-
tion, can it necessarily be written down in terms of ‘familiar’ functions?. Revisiting the
examples from the very beginning, in (1) we got lucky and only had to use polynomials
and trigonometric functions, but could it be that the solution requires functions that we’ve
never seen before, or even that nobody has ever seen before? Mathematicians have worked
hard to prove that various types of ODE’s are guaranteed to have solutions. For instance,
it is a theorem that the equation (7) always has a unique solution for any given t0 and x0,
assuming some mild conditions on the function f . On the other hand, Liouville proved
that the seemingly innocent equation (6), a special case of (7), has no solution in terms
of elementary functions or even their integrals. This might convince you that the general
study of ODE’s is very complicated, which is true. If you’re an aspiring mathematician, you
will find this course leads down a rabbit hole with many open problems and active research
questions at the other end. At the same time, differential equations show up all over the
place in science and engineering. How do people work with them? Firstly, there are many
ways to use numerical methods and computer algorithms to get find approximate solutions
to ODE’s, and sometimes this is sufficient in practical applications. At the same time,
there are many special ODE’s which can be solved exactly using familiar functions. This
will be the focus of this course. In the process we will witness various general phenomena
pertaining to ODE’s and acquiring an arsenal of intuition and basic techniques which can
be used as stepping stones for more complicated ODE’s or as basic guiding intuition for
numerical methods.


