
EXAMPLE OF HIGHER ORDER ODE WITH CONSTANT

COEFFICIENTS

KYLER SIEGEL

In this note we will explain how to find the general solution to the ODE

y(7) − 10y(4) + 25y′ = 0.

As always, we begin by making the ansatz y = ert and plugging this into the ODE. After
dividing everywhere by ert, we arrive at the characteristic equation

r7 − 10r4 + 25r = 0.

Firstly, we can easily factor out r to get

r(r6 − 10r3 + 25) = 0.

How can we factor r6 − 10r3 + 25? According to the rational roots theorem, if there’s a
(nonzero) rational root it has to be in the set {1, 5, 25,−1,−5,−25}. However, you can
check that none of these give roots. On other hand, notice that

r6 − 10r3 + 25 = (r3)2 − 10(r3) + 25,

and hence it is a perfect square:

r6 − 10r3 + 25 = (r3 − 5)2.

This means that the roots of r6 − 10r3 + 25 are the same as the roots of r3 − 5, except
that each one gets repeated twice. Also, recall that by the fundamental theorem of algebra
r3 − 5 must have three roots since it’s a degree three polynomial, although they might be
complex numbers and some of them could potentially be repeated. In fact, as we saw in
class, the roots of r3 − 5 are given by 3

√
5, 3
√

5 exp(2πi/3), and 3
√

5 exp(4πi/3). If you are
not convinced by this, please verify that each of these numbers raised to the third power
gives 5. It will be helpful to notice that

(exp(2πi/3))3 = exp(2πi) = cos(2π) + i sin(2π) = 1.
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Therefore, we could write out the roots to r7 − 10r4 + 25r as

r1 = 0

r2 =
3
√

5

r3 =
3
√

5 exp(2πi/3) =
3
√

5(cos(2π/3) + i sin(2π/3))

r4 =
3
√

5 exp(4πi/3) =
3
√

5(cos(4π/3) + i sin(4π/3))

r5 = r2

r6 = r3

r7 = r4.

The last three roots are the repeated ones, and notice that the ordering of these roots is
completely arbitrary. Also, notice that we can simplify expressions such as cos(2π/3), but
it’s not so crucial to do so, and it would be impossible if we encountered something more
complicated like cos(2π/7).

Finally, let’s put together the general solution. We know that it’s going to be of the
form

y(t) = C1y1(t) + C2y2(t) + C3y3(t) + C4y4(t) + C5y5(t) + C6y6(t) + C7y7(t),

where y1(t), ..., y7(t) form a fundamental set of solutions. To get these, we go back to our

ansatz ert, and plug in ri for r. This gives y1(t) = e0t = 1 and y2(t) = e
3√5t. Next we get

er3t = exp(
3
√

5(cos(2π/3) + i sin(2π/3))t).

To simplify formulas, let’s set a = 3
√

5 cos(2π/3), b = 3
√

5 sin(2π/3), c = 3
√

5 cos(4π/3), and
d = 3
√

5 sin(4π/3).
Since the polynomial r3 − 5 has real coefficients, it must be the case that the non-real

roots come in complex conjugate pairs. You should try to convince yourself that this must
be true. Also, you should convince yourself that r3 and r4 are indeed complex conjugates
of each other! In other words, a = c and b = −d.

Now we can alternatively write

er3t = exp(at+ ibt) = exp(at) exp(ibt) = exp(at)(cos(bt) + i sin(bt)).

This is a perfectly good solution to our original ODE, but it’s complex-valued. This is not
so bad, but we’d rather find a real-valued fundamental set of solutions, and we know such
a thing must exist. If you recall, the real and complex parts of any solution must also be
a solution. Therefore, we can take

y3(t) = exp(at) cos(bt)

y4(t) = exp(at) sin(bt).

Note that we could do the same thing with c, d instead of a, b, but it would give essentially
the same solutions we just found.
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Finally, to get y5, y6, y7 we do the usual trick of multiplying a repeated root solution by
t to get another solution:

y5(t) = ty2(t)

y6(t) = ty3(t)

y7(t) = ty4(t).


