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Problem 1. If n5 and n7 denote the number of Sylow 5- and 7-subgroups of G respectively,
then we have n5 ≡ 1 (mod 5) and n5|7 =⇒ n5 = 1, so the unique Sylow 5-subgroup A is
normal in G. Similarly n7 ≡ 1 (mod 7) and n7|5 =⇒ n7 = 1 and again the unique Sylow
7-subgroup B must be normal in G. Since gcd(5, 7) = 1, it follows that A ∩ B = {e} and
now from Homework 5, Problem 1 we conclude that G ∼= A×B ∼= Z5 × Z7

∼= Z35.

Problem 2.
1 Any q-cycle generates a subgroup Q of order q, e.g. (12 . . . q);
2 Consider the action of Sq on its Sylow q-subgroups by conjugation. Because q is prime,

these all have order q and are generated by any non-identity element. Therefore the
number of (Sylow) subgroups of order q is q!

q(q−1) = (q−2)! – there are q! ways to order
the elements of a q-cycle, with q cyclic repetitions, and any of its q − 1 non-trivial
powers gives rise to the same subgroup of order q. Since the conjugation action
is transitive, this quantity also equals the number of orbits =⇒ by orbit-stabilizer
theorem the normalizerNSq(Q) ofQ has order |Sq |

(q−2)! = q(q−1). Finally p|q−1|q(q−1),
so by Cauchy’s theorem NSq(Q) has a subgroup P of order p;

3 PQ is a group thanks to P ⊆ NSq(Q), and has order |P |·|Q||P∩Q| =
pq
1
= pq due to the fact

that gcd(p, q) = 1;
4 Pick any q ∈ Q, then pq = qp ⇐⇒ pqp−1 = q ⇐⇒ p ∈ CSq(q). Now the action of

Sq on the set of q-cycles by conjugation is transitive, so by orbit-stabilizer theorem∣∣CSq(q)
∣∣ = |Sq |

#q-cycles = q!
(q−1)! = q. But any e 6= p ∈ P has order p coprime to q,

so we can’t have p ∈ Q as well =⇒ p = peQ = peSq and q = eP q = eSqq are
non-commuting elements of PQ.

Problem 3. See here for Kyler’s solution.

Problem 4. We have 1365 = 3 × 5 × 7 × 13 and if np = 1 for any of those prime factors
p, then the unique Sylow p-subgroup will be a proper normal subgroup, so G automatically
cannot be simple. Suppose therefore that np > 1 ∀ p|1365; then together with the conditions
np ≡ 1 (mod p) and np|1365p

we deduce that n13 = 105, n7 ≥ 15, n5 ≥ 21. This already
implies that G must have at least (13− 1)× 105+ (7− 1)× 15+ (5− 1)× 21 = 1434 > 1365
elements, contradiction.

Problem 5. Note that {e} is always its own conjugacy class, so if G were to have only
2 conjugacy classes, then G \ {e} must constitute a conjugacy class. In such case, the
orbit-stabilizer theorem tells us that |G \ {e}|||G|, i.e. n − 1|n which is only possible if
n = 2. Conversely, the group of order 2 is clearly abelian and consequently has precisely 2
conjugacy classes.
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Problem 6. Using the prime factorization 203 = 7×29, Sylow’s theorems imply that n29 ≡ 1
(mod 29) and n29|7 =⇒ n29 = 1, so the unique Sylow 29-subgroup K is normal in G. Since
|H| = 203

29
= 7 is coprime to 29, it follows that H∩K = {e} and we conclude from Homework

5, Problem 1 that G ∼= H ×K ∼= Z7 × Z29.

Problem 7. Note that since 168 = 23 × 3 × 7, a Sylow 7-subgroup has order 7 and so do
all of its non-identity elements. Conversely, an element of order 7 generates a subgroup of
order 7, so it must necessarily lie in a Sylow 7-subgroup. Therefore the number of elements
of order 7 is given by the number of non-identity elements in Sylow 7-subgroups, i.e. 6×n7.
We know that n7 ≡ 1 (mod 7) and n7|24, but also n7 6= 1 as our group is simple =⇒ the
only possibility left is n7 = 8, in which case the answer to the problem is 48.
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