PROBLEM SET #7 SOLUTIONS

Problem 1. Let G be a finite simple group with |G| < 100. Prove that G is either abelian or has order 60. *Hints:*

- Count the elements of G in terms of their orders. When does this exceed |G?|
- If H is a large subgroup of G, consider the action G on the set of left cosets of H in G. What does the first isomorphism theorem say?
- Similarly, if H is a Sylow subgroup of G, consider the action G on the set of conjugates of H.

Solution 1. Firstly, any group of prime order is necessarily cyclic, and hence abelian. Moreover, we have seen that any nontrivial group whose order is a prime power necessarily has a nontrivial center. Since the center is a normal subgroup, this means the group cannot be simple (unless the center is the entire group, in which case it is abelian). After removing all orders from 2 through 99 which are prime powers, we are left with 63 possibilities.

If |G| = pq for p < q distinct primes, then by Sylow's third theorem, we have that the number n_q of Sylow q-subgroups is congruent to 1 mod q and also divides p. Since every integer greater than one which is congruent to 1 mod p is greater than p, the only possibility is that $n_q = 1$. This means that there is a unique Sylow q-subgroup, and it is necessarily normal since otherwise a conjugate of it would give a different Sylow q-subgroup. It follows that G is not simple. After taking this into account, we are left with 33 possibilities.

Similarly, suppose that $|G| = pq^k$ for p < q distinct primes and $k \in \mathbb{Z}_{\geq 1}$. Then the same reasoning as in the previous paragraph shows that there is a unique Sylow q-subgroup of G which is necessarily normal. After taking this into account, we are left with 28 possibilities.

Now suppose that $|G| = p^2 q$ for p < q distinct primes. By Sylow's third theorem, n_q divides p^2 and is congruent to 1 mod q. If $n_q = 1$ then G is not simple. We cannot have $n_q = p$, since p is not congruent to 1 mod q. The remaining possibility is that $n_q = p^2$. Then we must have that p^2 is congruent to 1 mod q, i.e. q divides $p^2 - 1$, so q divides either p - 1 or p + 1. Clearly we cannot have that q divides p - 1, and we can only have that q divides p + 1 in the case q = 3 and p = 2, i.e. |G| = 12.

Moreover, there is no simple group G of order 12. To see this, let H be a Sylow 2-subgroup, which has order 4. Let X denote the set of left cosets of H in G, so |X| = 3. Consider the action of G on X induced by left multiplication. This corresponds to a homomorphism $\Phi: G \to S_3$, and it is easy to check that the kernel is not all of G, since $gH \neq H$ for any $g \in G \setminus H$. Moreover, the kernel of Φ cannot be $\{e\}$, since then the first isomorphism theorem would imply that G is isomorphic to a subgroup of S_3 , but |G| = 12 whereas $|S_3| = 6$. Therefore ker(Φ) must be a normal subgroup of G which is

neither G nor $\{e\}$, so G is not simple. After taking these into account, we are left with following 10 possibilities: 24, 30, 36, 40, 42, 48, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96.

We now rule out these remaining possibilities (except for 60) by supposing that G is a simple group of a given order, and deriving a contradiction. Firstly, suppose that $|G| = 40 = (2^3)(5)$. Then n_5 must be 1 by a simple application of Sylow's third theorem. Similarly, we rule out |G| = 42, 66, 70, 78, 84, 88.

Now suppose that $|G| = 24 = (2^3)(3)$. In fact, the argument above for |G| = 12 easily generalizes to prove the following:

Lemma 1. If G is a finite group and H is a subgroup of index m, then there exists a homomorphism $\Phi: G \to S_m$ whose kernel is not all of G. In particular, if |G| does not divide m!, then the kernel cannot be $\{e\}$, and hence G is not simple.

If |G| = 24, we can apply this lemma to a Sylow 2-subgroup, which has index 3. We then get a contradiction, since 24 does not divide 3! = 6. A very similar argument takes care of |G| = 36, 48, 80, 96.

Now suppose that |G| = 30 = (2)(3)(5). Then we must have $n_3 = 10$ and $n_5 = 6$. This gives 10 * 2 = 20 elements of order 3 and 6 * 4 = 24 elements of order 5, which is impossible.

Now suppose that $|G| = 56 = (2^3)(7)$. In principle we could have $n_2 = 7$ and $n_7 = 8$. Note that each Sylow 2-subgroup has order 8, and hence 4 elements of order 8. Therefore we would have 7 * 4 = 28 elements of order 8, and 8 * 6 = 48 elements of order 7, which is impossible since 28 + 48 > 56.

Now suppose that $|G| = 72 = (2^3)(3^2)$. If $n_3 \neq 1$, then we must have $n_3 = 4$. Let X denote the set of Sylow 3-subgroups of G, so |X| = 4. Let G act on X by conjugation. This corresponds to a homomorphism $\Phi: G \to S_4$. Since G acts transitively on X thanks to Sylow's second theorem, the kernel cannot be all of G. It also cannot be $\{e\}$, since then |G| = 72 would have to divide $|S_4| = 24$, similar to the above lemma. Since the kernel of Φ is a normal subgroup of G, this gives a contradiction.

Finally, suppose that $|G| = 90 = (2)(3^2)(5)$. In principle we could have $n_3 = 10$ and $n_5 = 6$. This accounts 10 * 6 = 60 elements of order 9, and 6 * 4 = 24 elements of order 5. Taking into account the identity element, there are then at most 5 elements of order 2, so $n_2 \leq 5$. Now let X denote the set of Sylow 2-subgroups. Since |G| = 90 cannot divide $n_2!$, we get a contradiction as in the previous paragraph.

Addendum: Actually the above argument for |G| = 90 is incomplete, since in principle the Sylow 3-subgroups could be isomorphic to $\mathbb{Z}/(3\mathbb{Z}) \times \mathbb{Z}/(3\mathbb{Z})$, in which case there are no elements of order 9. As an alternative, we can use the following:

Lemma 2. Let G be a finite group with |G| = 2m for $m \in \mathbb{Z}_{\geq 1}$ odd. Then G has an index two normal subgroup.

Proof. By Cayley's theorem, there is an injective homomorphism $\iota : G \hookrightarrow S_G$. Let $\varepsilon : S_G \to C_2$ denote the sign homomorphism (its kernel is the alternating subgroup). Let $\Phi = \varepsilon \circ \iota : G \to C_2$ denote the homomorphism given by composing these two homomorphisms. By Cauchy's theorem, there is an element $x \in G$ of order 2. Then $\iota(x)$ is the permutation of G sending $g \in G$ to xg (c.f. the proof of Cauchy's theorem). Since $x^2 = e$, this permutation has order two. Moreover, this permutation does not fix any elements in G, i.e. $xg \neq g$ for any $g \in G$. It follows that the cycle decomposition of $\iota(x)$

must consist of m disjoint transpositions, and therefore $\Phi(x) = -1^m = -1$. This shows that Φ is surjective, and hence its kernel is an index two normal subgroup of G. \Box