
PROBLEM SET #6

Solution 1. Prove that every group of order p2 for p a prime is abelian. Hint: what
happens when you quotient by the center?

Problem 1. Let G be a group with |G| = p2. We have seen that the center Z(G) of
G must be nontrivial, by an application of the class equation. If Z(G) = G, then G is
evidently abelian. By Lagrange’s theorem, the only other possibility is that we have
|Z(G)| = p. In this case, note that the quotient group G/Z(G) has order p, and hence is
cyclic. Let xZ(G) denote a generator. Then every element of G/Z(G) can be written as
xkZ(G) for some k ∈ Z, and hence every element of G can be written as xkz for some
k ∈ Z and some z ∈ Z(G).

Let g = xkz and g′ = xk
′
z′ be two such elements in G, with z, z′ ∈ Z(G). To show

that G is abelian, it suffices to show that we have gg′ = g′g. We have

gg′ = xkzxk
′
z′ = xkxk

′
zz′ = xk+k′z′z = xk

′
xkz′z = zk

′
z′xkz = g′g,

as desired.

Solution 2. Let G be a finite group with |G| odd, and let g ∈ G be an element which is
not the identity element. Prove that g and g−1 are not conjugate in G. Hint: suppose
by contradiction that g and g−1 are conjugate. Consider the conjugacy class of g in G.
Show that whenever it contains an element it also contains its inverse.

Problem 2. Suppose by contradiction that we have xgx−1 = g−1 for some x ∈ G and
nonidentity g ∈ G. Let C denote the set of all elements in G which are conjugate to g.
Note that since g 6= e, we have e /∈ C, since the identity element always lies in a singleton
conjugacy class. Suppose that h ∈ C. We claim that h−1 ∈ C as well. Indeed, h ∈ C
means that we have h = aga−1 for some a ∈ G. Then h−1 = ag−1a−1 = axgx−1a−1 =
(ax)g(ax)−1, which shows that h−1 is also conjugate to g, and hence lies in C.

Since the elements of C appear in pairs (h, h−1) with h 6= h−1, it follows that |C| must
be even. By the orbit stabilizer theorem, |C| = |G|/|CG(g)|, where CG(g) denotes the
centralizer of g in G. But this implies that |G| be must be even, whereas by hypothesis
|G| is odd.
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