Modern Algebra I Fall 2019 Problem Set 4 Sample Solutions

Nguyen Dung Anton Wu Josh Zhou

October 11, 2019

Problem 1.

(a). Let s and r be the reflection and rotation by angle $\frac{\pi}{2}$ respectively, then

 $D_8 = \langle s, r \mid s^2 = r^4 = 1, rs = sr^{-1} \rangle = \{r^i \mid 0 \le i \le 3\} \sqcup \{sr^i \mid 0 \le i \le 3\}.$

Using these relations, it follows that for each element of the form sr^i we have for example $(sr^i)r = sr^{i+1}$ and $r(sr^i) = sr^{i-1} \neq (sr^i)r$, so $sr^i \notin Z(D_8)$. Analogously, if $r^i \in Z(D_8)$, then $r^is = sr^i \iff sr^{-i} =$ $s r^i \iff i = 0$ or 2. Conversely, it is easy to see that $1, r^2 \in Z(D_8)$ and therefore $Z(D_8) = \{1, r^2\}.$

(b). We deduce from above that the quotient group $D_8/Z(D_8)$ has order $8\div 2 =$ 4, and since it has no element of order 4, it must be isomorphic to $C_2 \times C_2$.

Problem 2.

(a).

$$
\sigma_1 := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 5 & 2 & 1 \end{pmatrix}
$$

decomposes into cycles as $(16)(2345)$, which expands as $(16)(25)(24)(23)$. This is a product of an even number of transpositions, so $\sigma_1 \in A_6$.

(b).

$$
\sigma_2 := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 6 & 2 & 1 & 5 \end{pmatrix}
$$

decomposes into cycles as (142365) , which expands as $(15)(16)(13)(12)(14)$. This is a product of an odd number of transpositions, so $\sigma_2 \notin A_6$.

(c).

$$
\sigma_3 := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 1 & 2 & 3 \end{pmatrix}
$$

decomposes into cycles as $(14)(25)(36)$. This is a product of an odd number of transpositions, so $\sigma_3 \notin A_6$.

Problem 3.

- (a). To show that $C_G(A)$ is a subgroup of G, we must show that $C_G(A)$ contains the identity, is closed under multiplication, and contains inverses.
	- Clearly $1 \in C_G(A)$, because for any $a \in A$ we have $1a1^{-1} = a$.
	- Suppose $g_1, g_2 \in C_G(A)$; let $a \in A$ be any element. We know that $g_1 a g_1^{-1} = a$ and $g_2 a g_2^{-1} = a$, so

$$
(g_1 g_2) a (g_1 g_2)^{-1} = (g_1 g_2) a (g_2^{-1} g_1^{-1})
$$

= $g_1 (g_2 a g_2^{-1}) g_1^{-1}$
= $g_1 a g_1^{-1}$
= a

hence $g_1 g_2 \in C_G(A)$.

• Suppose $g \in C_G(A)$; and let $a \in A$ be any element. We know that $qaq^{-1} = a$, so

$$
g^{-1}ag = g^{-1}(gag^{-1})g = (g^{-1}g)a(gg^{-1}) = a
$$

hence $g^{-1} \in C_G(A)$.

Thus, $C_G(A)$ is a subgroup of G. $\#$

However, $C_G(A)$ is not necessarily a normal subgroup of G; for instance, if $G = S_3$ and $A = \{(12)\}\text{, then } C_G(A) = \{\text{id}, (12)\}\text{, which we know is}$ not normal in S_3 .

[Remark: We have the following:

Prop: If $N_G(A) = G$, then $C_G(A) \trianglelefteq G$.

Proof: To show that $C_G(A)$ is normal in G, we must show for any $g \in G$ and $h \in C_G(A)$ that $ghg^{-1} \in C_G(A)$. Let $a \in A$ be any element; we know that $hah^{-1} = a$, and from the hypothesis $N_G(A) = G$, we have $b := g^{-1}ag \in A$ for any $g \in G$. Thus:

$$
(ghg^{-1})a(ghg^{-1})^{-1} = (ghg^{-1})a(gh^{-1}g^{-1})
$$

= gh(g^{-1}ag)h^{-1}g^{-1}
= ghbh^{-1}g^{-1}
= ghg^{-1}
= a

hence $ghg^{-1} \in C_G(A)$, and $C_G(A)$ is a normal subgroup of G. $\#$

For instance, since G is always normal in itself, we have $N_G(G) = G$, so this implies that the center of G, defined by $\mathcal{Z}(G) := C_G(G)$, is always a normal subgroup of G.]

(b). A straightforward computation shows:

$$
C_{S_3}(\{\text{id}\}) = S_3
$$

\n
$$
C_{S_3}(\{(12)\}) = \{\text{id}, (12)\}
$$

\n
$$
C_{S_3}(\{(13)\}) = \{\text{id}, (13)\}
$$

\n
$$
C_{S_3}(\{(23)\}) = \{\text{id}, (23)\}
$$

\n
$$
C_{S_3}(\{(123)\}) = \{\text{id}, (123), (132)\}
$$

\n
$$
C_{S_3}(\{(132)\}) = \{\text{id}, (123), (132)\}
$$

For instance, to compute $C_{S_3}(\{(123)\})$, we observe that (123) obviously commutes with itself, so $(123) \in C_{S_3}(\{(123)\})$; as $C_{S_3}(\{(123)\})$ is a group, this means $\langle (123) \rangle \subseteq C_{S_3}(\{(123)\})$. Now we simply check

$$
(123)(12) = (13) \neq (23) = (12)(123)
$$

$$
(123)(13) = (23) \neq (12) = (13)(123)
$$

$$
(123)(23) = (12) \neq (13) = (23)(123)
$$

so (12), (13), (23) $\notin C_{S_3}(\{(123)\})$; and $C_{S_3}(\{(123)\}) = \langle (123)\rangle$, as claimed. [In fact, since in general $C_G(A) = \bigcap_{a \in A} C_G(\{a\})$, these determine $C_{S_3}(A)$ for any $A \subset S_3$.]

Problem 4.

(a). Let g and h be arbitrary elements of $N_G(A)$, then

$$
(gh^{-1})a(gh^{-1})^{-1} = g(h^{-1}ah)g^{-1} \in gAg^{-1} = A \,\forall a \in A,
$$

so $gh^{-1} \in N_G(A)$ and the normalizer of A is indeed a subgroup. It need not be a normal subgroup as will be seen below.

(b). If σ is a 2-cycle, then $N_{S_3}(\langle \sigma \rangle) = \langle \sigma \rangle$ which is not normal, thus proving (a). Otherwise $N_{S_3}(\sigma) = S_3$ because the subgroup generated by σ will be normal.

Problem 5.

- (a). From the multiplication rule, we see that the center is $\mathcal{Z}(Q_8) = \{1, -1\}.$
- (b). We have the following:

Claim: The subgroups of Q_8 are $\langle 1 \rangle$, $\langle -1 \rangle$, $\langle i \rangle$, $\langle j \rangle$, $\langle k \rangle$, and Q_8 .

Proof: First observe that $\langle -i \rangle = \langle i \rangle$ and $\langle -j \rangle = \langle j \rangle$ and $\langle -k \rangle = \langle k \rangle$, so we have covered every subgroup of Q_8 generated by one element. Now let $A \subset Q_8$ be any subset with at least two elements, and consider the subgroup H generated by A . Either H can in fact be generated by one element, or we can take two 'non-redundant' elements $a, b \in A$ (viz. $b \notin \langle a \rangle$ and $a \notin \langle b \rangle$) with $\langle a, b \rangle \subseteq H$.

> But we have $ij = k$, so $k \in \langle i, j \rangle$, and $\langle i, j \rangle = \langle i, j, k \rangle = Q_8$. Thus, $\langle \pm i, \pm j \rangle = Q_8$. Similarly, we check that $\langle \pm i, \pm k \rangle = Q_8$ and $\langle \pm j, \pm k \rangle = Q_8$, so in every non-redundant case, we have checked that $\langle a, b \rangle = Q_8$.

> Of course, if H is a subgroup of Q_8 with $\langle a, b \rangle = Q_8 \subseteq H$, then it must be the case that $H = Q_8$.

> This finishes the proof that each of the proper subgroups of Q_8 can be generated by a single element; hence the list of subgroups of Q_8 is as claimed. $/\!\!/$

Now we prove that every subgroup of Q_8 is normal in Q_8 .

- In any group G , the trivial subgroups $\{id\}$ and G itself are normal. Thus, $\{1\}$ and Q_8 are normal in Q_8 .
- In any group G, the center $\mathcal{Z}(G)$ is normal (cf. the remark in part (a) of problem 3). Thus, $\mathcal{Z}(Q_8) = \{1, -1\}$ is normal in Q_8 .
- In any group G, any subgroup H with $|G| = 2|H|$ is normal, because the left cosets in G/H are H and $G-H$, and the right cosets in $H\backslash G$ are also H and $G - H$; therefore, if $g \in H$ then $gH = H = Hg$, and if $g \notin H$ then $gH = G - H = Hg$, so left and right cosets are the same for all $g \in G$.

Thus, $\langle i \rangle$, $\langle j \rangle$, $\langle k \rangle$, each of order 4, are normal in Q_8 .

Hence every subgroup of Q_8 is normal in Q_8 .

(c). Clearly Q_8 is not abelian, so Q_8 cannot be isomorphic to any of the abelian groups C_8 , $C_2 \times C_4$, $C_2 \times C_2 \times C_2$.

Also, Q_8 has only one element with order 2 (namely, -1), so Q_8 cannot be isomorphic to $D_{2\cdot 4} := \langle r, s \mid r^4 = s^2 = 1, rs = sr^{-1} \rangle$, which has five such elements (namely, r^2 , s, sr, sr^2 , sr^3).

Hence Q_8 is not isomorphic to any of these other subgroups of order 8.

Problem 6.

For $\Phi: G \to H$, let $K := \ker(\Phi)$ and $J := \text{im}(\Phi)$. We claim the following:

Claim: $K \trianglelefteq G$.

Proof: To show that K is a normal subgroup of G, we must show for any $g \in G$ and $k \in K$ that $gkg^{-1} \in K$. We know that Φ is a homomorphism and that $\Phi(k) = 1$, so we have:

$$
\Phi(gkg^{-1}) = \Phi(g)\Phi(k)\Phi(g)^{-1} = \Phi(g)\Phi(g)^{-1} = 1
$$

so $ak\,a^{-1} \in K$. Hence K is normal in G. //

Thus, G/K is a group; we can now define a map $\varphi: G/K \to J$ by $\varphi(gK) = \Phi(g)$. We check that φ is well-defined: if $g_1, g_2 \in G$ are such that $g_1K = g_2K$, then there exists $k \in K$ with $g_1 k = g_2$, so

$$
\varphi(g_1 K) = \Phi(g_1) = \Phi(g_1) \Phi(k) = \Phi(g_1 k) = \Phi(g_2) = \varphi(g_2 K)
$$

hence φ is well-defined.

Now we check that φ is an isomorphism between G/K and J.

• Suppose g_1K , $g_2K \in G/K$ are any two elements. Then

$$
\varphi(g_1K)\varphi(g_2K)=\Phi(g_1)\Phi(g_2)=\Phi(g_1g_2)=\varphi((g_1g_2)K)
$$

so φ is a homomorphism.

• Suppose $g_1K, g_2K \in G/K$ are such that $\varphi(g_1K) = \varphi(g_2K)$. Then

$$
\Phi(g_1g_2^{-1}) = \Phi(g_1)\Phi(g_2)^{-1} = \varphi(g_1K)\varphi(g_2K)^{-1} = 1
$$

so $g_1g_2^{-1} \in K$, which means $g_1K = g_2K$. Hence φ is an injection.

• Suppose $j \in J$ is any element. Then there exists $g \in G$ such that $\Phi(g) = j$. Thus, $\varphi(qK) = \Phi(q) = j$, so $j \in \text{im}(\varphi)$. Hence φ is a surjection.

Thus, we have shown that φ : $G/K \to J$ is an isomorphism. Hence $G/K \cong J$, as desired.

Problem 7. If $\Phi : S_3 \to G$ is a homomorphism, then ker Φ is a normal subgroup of S_3 and $|\text{im }\Phi| = \frac{|S_3|}{|\ker \Phi|}$. Since the only normal subgroups of S_3 are $\{1\}, \{(123)\}, S_3$, it follows that the only possible values for $|\text{im }\Phi|$ are 6, 2, 1. Conversely, each normal subgroup N can be realized as the kernel of the canonical map $\Phi: S_3 \to S_3/N$, hence all of the values above can be achieved.