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Problem 1.

(a). Let s and r be the reflection and rotation by angle π
2 respectively, then

D8 = 〈s, r | s2 = r4 = 1, rs = sr−1〉 = {ri | 0 ≤ i ≤ 3} t {sri | 0 ≤ i ≤ 3}.

Using these relations, it follows that for each element of the form sri

we have for example (sri)r = sri+1 and r(sri) = sri−1 6= (sri)r, so
sri 6∈ Z(D8). Analogously, if ri ∈ Z(D8), then ris = sri ⇐⇒ sr−i =
sri ⇐⇒ i = 0 or 2. Conversely, it is easy to see that 1, r2 ∈ Z(D8) and
therefore Z(D8) = {1, r2}.

(b). We deduce from above that the quotient group D8/Z(D8) has order 8÷2 =
4, and since it has no element of order 4, it must be isomorphic to C2×C2.

Problem 2.

(a).

σ1
..=

(
1 2 3 4 5 6
6 3 4 5 2 1

)
decomposes into cycles as (16)(2345), which expands as (16)(25)(24)(23).
This is a product of an even number of transpositions, so σ1 ∈ A6.

(b).

σ2
..=

(
1 2 3 4 5 6
4 3 6 2 1 5

)
decomposes into cycles as (142365), which expands as (15)(16)(13)(12)(14).
This is a product of an odd number of transpositions, so σ2 6∈ A6.

(c).

σ3
..=

(
1 2 3 4 5 6
4 5 6 1 2 3

)
decomposes into cycles as (14)(25)(36). This is a product of an odd num-
ber of transpositions, so σ3 6∈ A6.
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Problem 3.

(a). To show that CG(A) is a subgroup ofG, we must show that CG(A) contains
the identity, is closed under multiplication, and contains inverses.

• Clearly 1 ∈ CG(A), because for any a ∈ A we have 1a1−1 = a.

• Suppose g1, g2 ∈ CG(A); let a ∈ A be any element.

We know that g1ag
−1
1 = a and g2ag

−1
2 = a, so

(g1g2)a(g1g2)−1 = (g1g2)a(g−1
2 g−1

1 )

= g1(g2ag
−1
2 )g−1

1

= g1ag
−1
1

= a

hence g1g2 ∈ CG(A).

• Suppose g ∈ CG(A); and let a ∈ A be any element.

We know that gag−1 = a, so

g−1ag = g−1(gag−1)g = (g−1g)a(gg−1) = a

hence g−1 ∈ CG(A).

Thus, CG(A) is a subgroup of G. //

However, CG(A) is not necessarily a normal subgroup of G; for instance,
if G = S3 and A = {(12)}, then CG(A) = {id, (12)}, which we know is
not normal in S3.

[Remark: We have the following:

Prop: If NG(A) = G, then CG(A) E G.

Proof: To show that CG(A) is normal in G, we must show for any g ∈ G
and h ∈ CG(A) that ghg−1 ∈ CG(A). Let a ∈ A be any element;
we know that hah−1 = a, and from the hypothesis NG(A) = G,
we have b ..= g−1ag ∈ A for any g ∈ G. Thus:

(ghg−1)a(ghg−1)−1 = (ghg−1)a(gh−1g−1)

= gh(g−1ag)h−1g−1

= ghbh−1g−1

= gbg−1

= a

hence ghg−1 ∈ CG(A), and CG(A) is a normal subgroup of G. //

For instance, since G is always normal in itself, we have NG(G) = G, so
this implies that the center of G, defined by Z(G) ..= CG(G), is always a
normal subgroup of G.]
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(b). A straightforward computation shows:

CS3
({id}) = S3

CS3
({(12)}) = {id, (12)}

CS3
({(13)}) = {id, (13)}

CS3
({(23)}) = {id, (23)}

CS3
({(123)}) = {id, (123), (132)}

CS3
({(132)}) = {id, (123), (132)}

For instance, to compute CS3
({(123)}), we observe that (123) obviously

commutes with itself, so (123) ∈ CS3
({(123)}); as CS3

({(123)}) is a group,
this means 〈(123)〉 ⊆ CS3

({(123)}). Now we simply check

(123)(12) = (13) 6= (23) = (12)(123)

(123)(13) = (23) 6= (12) = (13)(123)

(123)(23) = (12) 6= (13) = (23)(123)

so (12), (13), (23) 6∈ CS3
({(123)}); and CS3

({(123)}) = 〈(123)〉, as claimed.

[In fact, since in general CG(A) =
⋂
a∈A CG({a}), these determine CS3

(A)
for any A ⊂ S3.]

Problem 4.

(a). Let g and h be arbitrary elements of NG(A), then

(gh−1)a(gh−1)−1 = g(h−1ah)g−1 ∈ gAg−1 = A ∀a ∈ A,

so gh−1 ∈ NG(A) and the normalizer of A is indeed a subgroup. It need
not be a normal subgroup as will be seen below.

(b). If σ is a 2-cycle, then NS3
(〈σ〉) = 〈σ〉 which is not normal, thus proving

(a). Otherwise NS3
(σ) = S3 because the subgroup generated by σ will be

normal.
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Problem 5.

(a). From the multiplication rule, we see that the center is Z(Q8) = {1, −1}.

(b). We have the following:

Claim: The subgroups of Q8 are 〈1〉, 〈−1〉, 〈i〉, 〈j〉, 〈k〉, and Q8.

Proof: First observe that 〈−i〉 = 〈i〉 and 〈−j〉 = 〈j〉 and 〈−k〉 = 〈k〉, so
we have covered every subgroup of Q8 generated by one element.

Now let A ⊂ Q8 be any subset with at least two elements, and
consider the subgroup H generated by A. Either H can in fact
be generated by one element, or we can take two ‘non-redundant’
elements a, b ∈ A (viz. b 6∈ 〈a〉 and a 6∈ 〈b〉) with 〈a, b〉 ⊆ H.

But we have ij = k, so k ∈ 〈i, j〉, and 〈i, j〉 = 〈i, j, k〉 = Q8.
Thus, 〈±i, ±j〉 = Q8. Similarly, we check that 〈±i, ±k〉 = Q8

and 〈±j, ±k〉 = Q8, so in every non-redundant case, we have
checked that 〈a, b〉 = Q8.

Of course, if H is a subgroup of Q8 with 〈a, b〉 = Q8 ⊆ H, then
it must be the case that H = Q8.

This finishes the proof that each of the proper subgroups of Q8

can be generated by a single element; hence the list of subgroups
of Q8 is as claimed. //

Now we prove that every subgroup of Q8 is normal in Q8.

• In any group G, the trivial subgroups {id} and G itself are normal.
Thus, {1} and Q8 are normal in Q8.

• In any group G, the center Z(G) is normal (cf. the remark in part (a)
of problem 3). Thus, Z(Q8) = {1, −1} is normal in Q8.

• In any group G, any subgroup H with |G| = 2 |H| is normal, because
the left cosets in G/H are H and G−H, and the right cosets in H\G
are also H and G−H; therefore, if g ∈ H then gH = H = Hg, and
if g 6∈ H then gH = G − H = Hg, so left and right cosets are the
same for all g ∈ G.

Thus, 〈i〉, 〈j〉, 〈k〉, each of order 4, are normal in Q8.

Hence every subgroup of Q8 is normal in Q8.

(c). Clearly Q8 is not abelian, so Q8 cannot be isomorphic to any of the abelian
groups C8, C2 × C4, C2 × C2 × C2.

Also, Q8 has only one element with order 2 (namely, −1), so Q8 cannot
be isomorphic to D2·4 ..= 〈r, s | r4 = s2 = 1, rs = sr−1〉, which has five
such elements (namely, r2, s, sr, sr2, sr3).

Hence Q8 is not isomorphic to any of these other subgroups of order 8.
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Problem 6.

For Φ : G→ H, let K ..= ker (Φ) and J ..= im (Φ). We claim the following:

Claim: K E G.

Proof: To show that K is a normal subgroup of G, we must show for any g ∈ G
and k ∈ K that gkg−1 ∈ K. We know that Φ is a homomorphism and
that Φ(k) = 1, so we have:

Φ(gkg−1) = Φ(g)Φ(k)Φ(g)−1 = Φ(g)Φ(g)−1 = 1

so gkg−1 ∈ K. Hence K is normal in G. //

Thus, G/K is a group; we can now define a map ϕ : G/K → J by ϕ(gK) = Φ(g).
We check that ϕ is well-defined: if g1, g2 ∈ G are such that g1K = g2K, then
there exists k ∈ K with g1k = g2, so

ϕ(g1K) = Φ(g1) = Φ(g1)Φ(k) = Φ(g1k) = Φ(g2) = ϕ(g2K)

hence ϕ is well-defined.

Now we check that ϕ is an isomorphism between G/K and J .

• Suppose g1K, g2K ∈ G/K are any two elements. Then

ϕ(g1K)ϕ(g2K) = Φ(g1)Φ(g2) = Φ(g1g2) = ϕ((g1g2)K)

so ϕ is a homomorphism.

• Suppose g1K, g2K ∈ G/K are such that ϕ(g1K) = ϕ(g2K). Then

Φ(g1g
−1
2 ) = Φ(g1)Φ(g2)−1 = ϕ(g1K)ϕ(g2K)−1 = 1

so g1g
−1
2 ∈ K, which means g1K = g2K. Hence ϕ is an injection.

• Suppose j ∈ J is any element. Then there exists g ∈ G such that Φ(g) = j.
Thus, ϕ(gK) = Φ(g) = j, so j ∈ im (ϕ). Hence ϕ is a surjection.

Thus, we have shown that ϕ : G/K → J is an isomorphism. Hence G/K ∼= J ,
as desired. �

Problem 7. If Φ : S3 → G is a homomorphism, then ker Φ is a normal sub-

group of S3 and | im Φ| = |S3|
| ker Φ| . Since the only normal subgroups of S3 are

{1}, {(123)}, S3, it follows that the only possible values for | im Φ| are 6, 2, 1.
Conversely, each normal subgroup N can be realized as the kernel of the canon-
ical map Φ : S3 → S3/N , hence all of the values above can be achieved.
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