
SOME HISTORICAL CONTEXT

We begin1 with the abstract definition of a group;

Definition 1. A group is an ordered pair (G,µ), where G is a set and µ : G×G→ G
is a binary operation, satisfying the following axioms:

(1) (associativity) µ(µ(a, b), c) = µ(a, µ(b, c)) for any a, b, c ∈ G
(2) (identity) there exists e ∈ G such that for any a ∈ G we have µ(a, e) = µ(e, a) = a
(3) (inverses) for any a ∈ G, there is an element a−1 ∈ G such that µ(a, a−1) =

µ(a−1, a) = e.

As we saw in class, a few basic examples are:
• the integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }, with the binary operation µ : Z×Z→ Z
given by ordinary addition of integers
• the nonzero rational numbers Q× := Q \ {0}, with the binary operation given by
ordinary multiplication of rational numbers
• the nonzero complex numbers C× := C \ {0}, with the binary operation given by
multiplication of complex numbers, etc.

We also saw that Z equipped with ordinary multiplication is not a group, since most
elements do not have an inverse within the integers.

Another very important family of groups are the permutation groups. Recall that for
n ∈ Z≥1, Sn is the set of permutations of the set {1, . . . , n}, i.e. invertible maps from
the set {1, . . . , n} to the set {1, . . . , n}. The natural binary operation µ : Sn × Sn → Sn
is given the composition of set maps, i.e. for f, g ∈ Sn, we define µ(f, g) ∈ Sn to be the
permutation characterized by µ(f, g)(k) = (f ◦ g)(k) = f(g(k)) for any k ∈ {1, . . . , n}.
We have |Sn| = n! (i.e. Sn is a set whose number of elements is n!). Also, for n ≥ 3, the
group Sn is nonabelian, meaning that the binary operation is not always commutative,
i.e. µ(f, g) 6= µ(g, f) for some elements f, g ∈ Sn. We will be encountering permutation
groups a lot throughout the course. In fact, we will see that, in a certain sense, every
group is a subgroup of permutation group (this result is known as Cayley’s theorem).

At this early stage in the course, you should be asking yourself:

Question 2. Why is this definition of a group a “good” one, or the “right” one? Why
should you care?

It is not possible to answer this question in a few sentences. Hopefully, an answer will
begin to unfold over the course of the semester. As we will see, this abstract definition of
a group leads to a beautifully self-consistent theory admitting many nontrivial results.
We will be seeing a great many diverse examples of groups which all satisfy this definition.
We will also see that there are some surprisingly deep structural theorems about groups.

Date: September 5, 2019.
1Note: in this document and subsequent ones there will likely be plenty of typos and possibly more

serious errors. If anything causes confusion, I appreciate you letting me know so that I can correct it for
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Although we will not focus on many applications in this course, there are certainly too
many to innumerate. At least in my view, groups are the mathematically precise way of
encapsulating the concept of “symmetry”. Any time symmetry is important, groups are
likely to be important as well.

For the time being I would like to give a few words of historical context. It is important
to wonder: how did humanity arrive at this definition of a group? In fact, it took a very
long time and a great many brilliant minds. Roughly speaking, up through the 18th
century, algebra was primarily about solving explicit algebraic equations. These equations
often had a concrete geometric interpretation, in the spirit of say Euclidean geometry. In
the 19th century, a transition occurred. Mathematicians began to realize that solving
equations is often not possible, and that perhaps this approach is too simplistic. Instead,
they began to seek more structure, and slowly arrived at such abstract concepts as
groups, rings, fields, modules, representations, and so on. From the 20th century onward,
algebra has been primarily about understanding these abstract structures. The primary
goals are now to prove nontrivial theorems about these structures, and to better how
they interrelate with each other and also with other areas of mathematics and science.
Below, I will try to briefly describe how this transition came about. For more details, I
recommend the very interesting (and quite readable) book “A History of Algebra” by
B.L. van der Waerden. There is also a very nice short article “The Evolution of Group
Theory: a Brief Survey” by Israel Kleiner, which should be readily available online. Any
inaccuracies or misrepresentations in the exposition below are my own.

Al-Khwarizmi. The word “algebra” comes from the arabic “al-jabr”, which is roughly
translated into “the reunion of broken parts”. An important early treatise on algebra was
written by al-Khwarizmi (780-850), who was a Persian born in present day Uzbekistan
and did most of his important work in Bagdad (the center of the scientific Arab word
in that period). The term al-jabr roughly refered to the idea of adding equal terms to
both sides of an equation in order to eliminate negative terms. As an example from
al-Khwarizmi’s treatise, given the equation

x2 = 40x− 4x2,

one can perform al-jabr to reduce this to 5x2 = 40x. However, it’s important to realize
that for much of history these types of algebraic equations were written out in sentences
rather than symbolically, e.g. al-Khwarizmi writes the equation x2 = 40x− 4x2 as (after
translating to English) “a square, which is equal to forty things minus four squares”. Our
modern symbolic notation is often attribute to René Descartes, who wrote his important
treatise around 1637.

The solution to the general quadratic equation ax2 + bx + c = 0 was known since
ancient times. By completing the square, one arrives at the (in)famous formula

x =
−b±

√
b2 − 4ac

2a
.

Note that for most of history, only the positive real-valued solutions would have been
acknowledged.
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Given the enormous important of the quadratic formula, it is natural to ask for a
similar formula for the general cubic equation

ax3 + bx2 + cx+ d = 0.

We might as well divide by a and consider instead the equation x3 + ax2 + bx+ c = 0.
This turns out to be quite a bit trickier. We next turn to Italy.

Scipione del Ferro. As far as we know, Scipione del Ferro (1465-1526), who lived in
Bologna, Italy, was the first to solve the general cubic equation. Here is his idea:
Step 1: The first step (which I believe was already well-known), is to make the change
of variable x′ = x+ a/3. This makes the quadratic term disappear. Indeed, the equation
x3 + ax2 + bx+ c = 0 becomes

(x′ − a/3)3 + a(x′ − a/3)2 + b(x′ − a/3) + c = 0.

Using the binomial expansion formula, we have

(x′ − a/3)3 = (x′)3 + 3(x′)2(−a/3) + 3(x′)(−a/3)2 + (−a/3)3

and
(x′ − a/3)2 = (x′)2 − 2(x′)(a/3) + (−a/3)2,

and so we see that the two quadratic terms 3(x′)2(−a/3) and a(x′)2 cancel each other.
Step 2: It therefore suffices to consider an equation of the form x3 + px+ q = 0. For
concreteness, let’s consider the example

x3 + 6x− 20 = 0.

Now del Ferro’s trick is to put x = u− v, where u and v are two new variables. Then
x3 + 6x− 20 = 0 becomes

(u− v)3 + 6(u− v)− 20 = 0,

which can be written as

u3 − v3 − 3uv(u− v) + 6(u− v)− 20 = 0.

This equation will be satisfied provided that we have{
3uv = 6

u3 − v3 = 20.

To achieve this, note that the first equation implies uv = 2, and hence u3v3 = 8. Since
we now know the product and sum of u3 and v3, we can easily solve for u and v, and
hence for x. For example, after making the substitution v3 = 8/u3, the second equation
gives

(u3)2 − 8 = 20(u3),

so we can solve for u3 using the quadratic formula. The final result is

x =
3

√√
108 + 10− 3

√√
108− 10.

Incidentally, this number is equal to 2, which one can easily check is a root of x3+6x−20
(although a typical cubic equation will not have integer solutions).

For some reason, Scipione del Ferro did not publish this monumental discovery, and
told only a few close friends and colleagues.
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Niccolo Tartaglia. Niccolo Tartaglia (1499 - 1557) was born in Brescia, Italy and
lived in Venice. He was a famous teacher of mathematics and apparently the first to
translate Eucld and Archimedes into Italian. In 1535, he was challenged to a mathematics
competition by a student of Scipione del Ferro by the name of Fiore. Both of them would
try to solve 30 mathematics problems, and the loser would have to pay for 30 banquets.
This style of challenging another mathematician was apparently common in those days.
As it turns out, all 30 problems were examples of the form x3 + px+ q = 0. In a moment
of inspiration, Tartaglia rediscovers del Ferro’s insight, and manages to solve them all.
He is so proud of his discovery that he renounces the 30 banquets. For some reason,
Tartaglia also does not publish his method.

Gerolamo Cardano. Gerolamo Cardano (1501-1576) was a prominent doctor, as-
trologer, philosopher, and mathematician living in Milan. Having heard of Tartaglia’s
discovery, he convinces Tartaglia to come to Milan and stay in his house. He promises to
introduce Tartaglia to the military commander of Milan so that Tartaglia can demonstrate
some of his military inventions. When Tartaglia arrives, Cardano persuades him to reveal
his secret of the cubic. Tartaglia does, but only under the condition that Cardano swears
an oath of secrecy, which takes place on March 25, 1539.

Lodovico Ferrari. Lodovico Ferrari was born in 1522 in Bologna and became
Cardano’s servant at the age of 14. As he was extremely bright, Cardano started to teach
him mathematics. Later, Ferrari makes an enormous discovery. Namely, he figures out
how to solve the general quartic equation x4+ax3+ bx2+ cx = 0. His idea is roughly the
following, which is explained in Cardano’s book “Args Magna, sive de regulis algebraicis”,
printed in 1545. Incidentally, by a similar trick to before, it is always possible to remove
the cubic term by a simple change of variables. Now let us consider the example

x4 + 6x2 − 60x+ 36 = 0.

By a little manipulation, this equation can be written in the form

(x2 + 6 + C)2 = 6x2 + 60x+ 2Cx2 + 12C + C2,

for any constant C. If the right hand side happens to be a perfect square, then we can
take the square roots of both sides to arrive at a quadratic equation for x, which we
know how to solve. So the key is to pick C such that the right hand side is a perfect
square. This happens precisely when the discriminant (i.e. b2 − 4ac in the context of the
quadratic formula) is zero, so we must have

602 − 4(6 + 2C)(12C + C2) = 0.

This is a cubic equation for C, which at this point in time Cardano knows how to solve!
So together, Cardano and Ferrari can now solve a general quartic equation. But there’s

a problem: their solution relies on the solution of the cubic equation, and Cardano is
sworn to secrecy! However, in 1543, Cardano and Ferrari to go Bologna to pursue a
rumor that del Ferro has already known how to solve the cubic before Tartaglia. They
are shown some of del Ferro’s posthumous papers, and see his solution to the cubic
written out clearly. They therefore decide to publish their work, citing both del Ferro
and Tartaglia for the solution of the cubic. Needless to say, Tartaglia is furious. In
retaliation, his publishes the text of the oath.
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Lagrange. Lagrange (1736 - 1813, also Italian) made important early contributions
to what is now group theory. The solution of the quintic equation x5 + ax4 + bx3 + cx2 +
dx+ e = 0 resisted efforts. In the above solutions of the cubic and quartic equations, one
introduces a trick to arrive at an auxiliary equation of lower degree. However, similar
efforts for the quintic appeared to always result in an auxiliary equation of higher degree.
It turns outs to be very fruitful to study the effect of permuting the roots of a polynomial,
and this sheds light on why these tricks for the cubic and quartic work.

Abel. Niels Henrik Abel (1802 - 1829) was a brilliant Norwegian mathematician. In
1824, at age 22, after initially thinking he could solve the quintic equation, he managed to
prove that the general quintic equation cannot be solved by radicals. His work makes use
of the earlier work of Lagrange and Cauchy. Roughly speaking, his result says that there
is no analogue of the quadratic formula for the equation x5+ax4+ bx3+ cx2+dx+e = 0,
which would give the roots by applying the usual arithmetic operations to the coefficients
a, b, c, d, e, allowing ourselves also to iteratively extract nth roots. Group theory had still
not quite been born, but note that abelian groups are named after Abel.

Galois. Galois was born in 1811 near Paris and died 20 years later in a (politically
motivated) dual. Knowing his premature end was near, Galois wrote up his ideas as best
he could. It would be many decades before his important insights were truly appreciated.
The main outcome of his work is a conceptual proof of Abel’s theorem in terms of a
theory which is nowadays called Galois Theory. The starting point of Galois theory is to
associate to each polynomial a group, called its “Galois group”. The Galois group of a
polynomial is a certain subgroup of the group of permutations of its roots. Galois was
the first to introduce the term “group”, although his definition was still rather specific to
permutation groups and their subgroups. As Galois realized, one can then translate the
solvability of a polynomial equation by radicals into a purely group theoretic property of
its Galois group. Galois theory connects groups to another important object in abstract
algebra: fields. This will be covered in the second semester of this course.

Many others. Many others contributed to the birth of group theory, and I cannot give
a full historical account here. After Galois, Augustin-Louis Cauchy (1789-1857, French)
and Arthur Cayley (1821 -1895, British) developed a full-blown theory of permutation
groups. In a 1854 paper, Cayley was perhaps the first to give an abstract definition
of a group, although his definition only applies to finite groups and is not explicit
about the existence of inverses. Note that such abstractions were not necessarily well-
received by the mathematical community at the time. Walther von Dyck (1856 - 1934,
German) is credited with giving the first full modern definition of a group. Felix Klein
(1849 - 1925, German) made many important early contributions to groups of geometric
transformations. Sophus Lie (1842 - 1899, Norwegian) initiated the study of what are
now called Lie groups (which, while examples of groups, are mostly beyond the scope of
this course). Of course, this is only the very beginning of the theory of groups.


