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In this talk, we will introduce some algebro-geometric notions on linear systems on curves, and their
roles in proving transversality for moduli spaces. We will roughly follow [Har77].

1. LINEAR SYSTEMS

Let X be a nonsingular projective variety over a ring k and let 2 be a line bundle on X. For each
non-zero global section s € I'(X, ), we can define the divisor of zeroes of s, denoted D = (s)o, to be
the hypersurface defined by the equation s = 0. Geometrically, we have

1.1 PROPOSITION. Let Dy be a divisor on X with £ = X£(D,) be the corresponding line bundle on X,
then

(a) for each nonzero s € I'(X, L), the divisor of zeros (s)y is an effective divisor linearly equivalent
to Dy;

(b) every effective divisor linearly equivalent to Dy is (s)y for some s € I'(X, X£);

(c) two sections s,s” € T'(X, L) have the same divisor of zeros if and only if there is a A € k* with
s' = As.

Based on the definition, we have

1.2 DEFINITION. A linear system 9 on X is the projectivization of a linear subspace of I'(X, ). The
dimension of ? is the dimension of the corresponding projective space.
A point p € X is a base point of a linear system 0 if p € supp D for all D € 0.

It's clear from the definition that

1.3 LEMMA. p is a base point of ? if and only if for all s € 0, s(p) = 0. In particular, d is base-point free
if and only if £ is generated by global sections.

Consider the largest linear system 0 = PI" (X, £). A choice of basis of 0 induces a map ¢ = (s :---
Sp): X — P if D is base-point free. Further more,

1.4 DEFINITION. 0 is said to separate points if for any two distinct points p, q € X, there is D € 0 such
that p € supp D and q ¢ supp D.

0 is said to separate tangent vectors if given a closed point p € X and a tangent vector t € T,X,
there is D € o such that p € supp D but t ¢ T,(D).

1.5 PROPOSITION. ¢ is a closed immersion if and only if 0 is base-point free, separates points and
tangent vectors.

1.6 DEFINITION. A line bundle . over X is ample if there exists m so that £“™ is very ample, i.e. it’s
base-point free and the corresponding morphism ¢ is a closed immersion.



1.7 PrROPOSITION. Equivalently, £ is ample if and only if for every coherent sheaf & on X, there is an
my so that for all m > m,, the sheaf F @ L™ is generated by global sections.

Recall that there is a sheaf Opx«(1) on P™ dual to the tautological line bundle O(—1), which under
immersion ¢ pulls back to a line bundle on X.

1.8 PROPOSITION. We have £ ~ ¢*Opx(1) if £ is very ample.

We conclude this section with Serre’s vanishing theorem:
1.9 THEOREM (Serre). Let X be a projective scheme over a noetherian ring A, and let Ox(1) be a very
ample invertible sheaf on X over Spec A.

(a) for each i > 0, H'(X, &) is a finitely generated A-module;

(b) there is an integer ng, depending on &, such that for each i > 0 and each n > ny, H' (X, %(n)) = 0.

2. DIVISORS ON CURVES

Now we turn to divisors on algebraic curves. Given a nonsingular projective curve X and a line bundle
X on X, the corresponding divisor of zeroes of global sections of )£ are formal linear combinations
of closed points on X. Given p € X, the map D +— D + p of divisors induces a map of linear systems
[D| = |D + p|

2.1 ProPrOSITION. Let D be a divisor on X. Then

(a) the complete linear system |D| has no base points if and only if for every point p € X,

dim |D — p| = dim |D| — 1;

(b) D is very ample if and only if for every two points p,q € X (including the case p = q),

dim|D — p — q| = dim|D| — 2.

Proof. We have the following short exact sequence of line bundles
0— L(D—-p) - L(D) - kip) -0
which induces an exact sequence of global sections
0 — I'(X, L(D - p)) » T'(X, L(D)) — k,

so that dim |D — p| is either dim |D| or dim|D| — 1 and the map ¢: |D — p| — |D| is injective. ¢ is
surjective if and only if p is a base point, and we concludes (a).

If D is very ample, D has no base points, so we must have dim |D —p — q| = dim |D| — 2. Conversely,
it follows from the condition and (a) that |D| has no base points, and we need to show it separates points
and tangent directions. Let p, g € X be distinct points, the existence of sections on |D| non-vanishing on
p is equivalent to saying p is not a base point of |D|, so equivalently dim |D — p| = dim |D| — 1. Therefore
separating points is equivalent to p,q not being basepoints of |D|, which is clear from the condition.
Now fix p € X, note that dim T,X = 1, tangent vector separation is equivalent to saying the existence of
a divisor D’ € |D| such that p has multiplicity 1, since dim T,D" = 0 if p has multiplicity 1 in D’ and 1 if
having higher multiplicity. But having multiplicity 1 is equivalent to saying p is not a basepoint of the
linear system |D — p|, which is equivalent to dim |D — 2p| = dim |D| — 2. Therefore D is very ample and
we have shown (b). O




We conclude this section with a result on reducing the dimension of the projective space that X
can be closedly immersed into. Assume that we already have a closed immersion X — P", and let
O € P*\ X be any point. We define a map ¢: X — P"~! as follows: put O = [1:0:---:0] € P* and
Dy ={[0:ay:---:ay]la; € k} be the divisor at infinity. For each x € X, we let ¢(x) be the intersection
of the unique line passing through O and x with D_.,. This map is clearly well-defined and is algebraic.

2.2 DErFINITION. We define the secant line determined by p,q € X to be the line in P" joining p and
q. If p is a point of X, the tangent line to X at p is the unique line . C P" passing through p, whose
tangent line T,(L) is equal to T,(X) as a subspace of T, (P").

2.3 PROPOSITION. ¢ is a closed immersion if and only if
(a) O is not on any secant line of X, and
(b) O is not on any tangent line of X.

Proof. Consider the dimension n — 1 linear system in |Opx(1)| with O as the common base point.
Intersection of any divisor D € |Opn(1)| with X gives a divisor on X, with ¢ the corresponding morphism
into P*~!. The condition listed in the Proposition is then equivalent to the separation of points and
tangent vectors condition, hence the conclusion. [

3. FRAMED CURVES

In this section, we will give a coarse analysis of moduli space of pseudo-holomorphic spheres in P¢ of
degree d. Write
Moo(P?,d)

for the moduli space. Let F be the Zariski open subset of 1 (Pd,d) consisting of nodal holomorphic
spheres not contained in any hyperplanes of P?, and let

univ: G — %

be the universal curve, where the preimage univ ' (F) is the curve F in P.

3.1 LEMMA. Both G and & are quasi-projective smooth varieties.

Proof. Note that J1, (Pd, d) is a projective orbifold, where the smooth locus consists of points of trivial
automorphism group. Given an element u: ¥ — P9 of &, the pull-back u*Op:(1) has degree d on ¥,
and since u(X) does not lie inside any hyperplanes, we get a canonical basis of sections {s;,---,s4} C
H° (X, u*Opa(1)). Therefore we obtain a pair (X, u*Op«(1), dr) where F comes from linear hyperplanes.
Conversely, given such a pair (X, L, F) where L is a line bundle over ¥ of degree d and F a frame
of H(X, L), a choice of basis of H’ (¥, L) induces an embedding of ¥ into P! not contained in any
hyperplanes, so we have a bijection between F and the space of pairs (X, L, F).

The automorphism group of the pair (X, L, F) is an automorphism group of X that lifts to an auto-
morphism of L and fixes the basis F, so should act on H°(X, L) trivially. Over each unstable component
of ¥, L has strictly positive degree so that there are sections of L vanishing on all other components, and
hence the automorphism group should fix the dual graph of ¥, and hence fixing each components. Since
the dual graph is a tree, leaves are unstable and the automorphism group must fix the unstable com-
ponent pointwise. This implies that the automorphism group of (¥, L, F) is trivial, and the smoothness
follows. ]

3.2 DEFINITION. Let X be a genus 0 nodal curve. A domain map is an inclusion map t: ¥ < G so that
t is an isomorphism onto a fiber of the universal curve over F.
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3.3 LEMMA. Let ¥ be a genus 0 nodal curve and let Q € Q*(X) a closed 2-form representing an integral
cohomology class. Then there exists a unique Hermitian line bundle on ¥ up to isomorphism whose
curvature is —27i€2.

3.4 DEFINITION. For any nodal connected genus zero curve % and for any 2-form 2 on ¥ admitting an
integral lift, we define Ly to be a Hermitian line bundle whose curvature is —27iQ2. We write (—, —)q
for its associated Hermitian metric.

3.5 DEFINITION. A framed genus 0 curve in X is a tuple (u, ¥, F) where

(a) X is a genus zero nodal curve;

(b) u: ¥ — X is a smooth map representing 8 so that the degree of L, is strictly positive on each
unstable component of ;

(c) F = (fo, -+ ,fq) is a basis of H’ (L,-y) so that the Hermitian matrix

H(u, X, F):= </Z<fi,fj>u*9>
i,j=0,.d

has positive eigenvalues.

4. HORMANDER'S PEAK SECTIONS AND TRANSVERSALITY

In this section, we briefly explains the construction of “peak sections” that will play a role in achieving
transversality for thickenings of moduli spaces of holomorphic curves. We explain the setting in a slightly
more general way: consider a compact Kahler manifold (V, Jy, ®) without boundary of dimension m, and
choose a Hermitian vector bundle E together with an ample line bundle L on Y. We write Herm(E, E)
for the bundle of hermitian endomorphisms of E. With the given metric, cup product by & induces a

dual map
p—1,q-1

b.q
No: \T'Y@Herm(E,E) » /\ T*V®Herm(E, E)
analoguous to the Lefschetz operator. On the other hand, recall that a hermitian connection V is a map
V:E-TV®E

which preserves the hermitian metric on E and is holomorphic for Jy. The curvature of ¥ can then be
written as
Ry =V oVt E— /\QT*Y@)E,
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which is equivalently a section of the bundle /\ T*Y ® Herm(E, E), so that iR; is a section of /\ T"'Y ®
P4 p+1,q+1

Herm(E,E). Wedge sum by iR; induces a map of bundles /\T*Y ® Herm(E, E) — /\ T*Y ®
Herm(E, E).
4.1 THEOREM (Hoérmander). Let p,q € N and suppose that the commutator

P4 p.q
A:=[iRy, Ny): \ TV @ Herm(E, E) -» \ T*V ® Herm(E, E)

is positive definite on each fiber. Let c; be the L* norm of A and define c := cgi. Then for each

gelL? </\P'qT*Y ® fE’) satisfying dg = 0, there exists f ¢ L? (/\P'q‘iT*Y ® fi) satisfying ||f||2 < c|lg]|z
and of = g.



Fix an effective divisor D, we can extend Hormander’s result to vector bundles of the form E ® O(D)
where we choose a hermitian metric on Oy(D) making the commutator [iRpg0,(p), No) positive definite
on (p, q)-forms.

4.2 LEMMA. If g = 0 in a small neighbourhood of D, tand we set ¢ = cgé(gy(m, then we can find f with
flp =0.

Proof. Note that if g = 0 in a small neighbourhood of D, then g belongs to sections of the line bundle
E ® Oy(D), and Hormander’s result applies to give f € L2 </\P'q‘1T*Y QE® @y(D)) with df = g and
Ifllze < c|lg|ze. Clearly f|p = 0. 0

The key Lemma of this section is the following “existence of peak sections™:

4.3 LEMMA. Fix an effective divisor D C V and a point x € ¥\ D. Let e € E|,, and let 8, be the Dirac
delta section at x with value e. There are holomorphic sections s; and 3, of E ® L¥ and L* respectively,
for k € N, so that

e (sp,5;) — 6. in the sense of distributions as k — oo;
e s, and 3, vanish along D.

Proof. Based on [Tia90], there exists a sequence of holomorphic sections (3)en of L¥ where the norm
of $, converges to the Dirac delta function at x. Consider a smooth section 0 € C*(E) with o(x) = e
and is holomorphic in a neighbourhood of x. Define s, := 0 ® 5, then we can find section (gi)ren of

(E ® L*)gen = (/\m'0 VY ® E;)k such that the L?>norm of g; goes to 0 as k — oo and dgy = s}, in
eN
/\m'1 T*V ® E; for each k € N. Define s, := s, — gi for each k, then (s, 3;), for k € N, converges in

/44

the sense of distributions to the limit of (s}, 3,) as k — oo, which is é.. Imposing Lemma we can
achieve that 0 = 0 near D, so that both s, and §; vanish along D for each k. O
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