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In this talk, we will introduce some algebro-geometric notions on linear systems on curves, and theirroles in proving transversality for moduli spaces. We will roughly follow [Har77].
1. Linear Systems

Let X be a nonsingular projective variety over a ring k and let L be a line bundle on X. For eachnon-zero global section s ∈ Γ(X, L), we can define the divisor of zeroes of s, denoted D = (s)0, to bethe hypersurface defined by the equation s = 0. Geometrically, we have
1.1 Proposition. Let D0 be a divisor on X with L = L(D0) be the corresponding line bundle on X,then

(a) for each nonzero s ∈ Γ(X, L), the divisor of zeros (s)0 is an effective divisor linearly equivalentto D0;(b) every effective divisor linearly equivalent to D0 is (s)0 for some s ∈ Γ(X, L);
(c) two sections s, s′ ∈ Γ(X, L) have the same divisor of zeros if and only if there is a λ ∈ k∗ with

s′ = λs.
Based on the definition, we have

1.2 Definition. A linear system d on X is the projectivization of a linear subspace of Γ(X, L). The
dimension of d is the dimension of the corresponding projective space.A point p ∈ X is a base point of a linear system d if p ∈ supp D for all D ∈ d.It’s clear from the definition that
1.3 Lemma. p is a base point of d if and only if for all s ∈ d, s(p) = 0. In particular, d is base-point freeif and only if L is generated by global sections.Consider the largest linear system d = PΓ (X, L). A choice of basis of d induces a map φ = (s1 : · · · :
sn) : X → Pn−1 if d is base-point free. Further more,
1.4 Definition. d is said to separate points if for any two distinct points p, q ∈ X, there is D ∈ d suchthat p ∈ supp D and q ̸∈ supp D.

d is said to separate tangent vectors if given a closed point p ∈ X and a tangent vector t ∈ TpX,there is D ∈ d such that p ∈ supp D but t ̸∈ Tp(D).
1.5 Proposition. φ is a closed immersion if and only if d is base-point free, separates points andtangent vectors.
1.6 Definition. A line bundle L over X is ample if there exists m so that L⊗m is very ample, i.e. it’sbase-point free and the corresponding morphism φ is a closed immersion.
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1.7 Proposition. Equivalently, L is ample if and only if for every coherent sheaf F on X, there is an
m0 so that for all m ≥ m0, the sheaf F ⊗ L⊗m is generated by global sections.Recall that there is a sheaf OPn (1) on Pn dual to the tautological line bundle O(−1), which underimmersion φ pulls back to a line bundle on X.
1.8 Proposition. We have L ≃ φ∗OPn (1) if L is very ample.We conclude this section with Serre’s vanishing theorem:
1.9 Theorem (Serre). Let X be a projective scheme over a noetherian ring A, and let OX(1) be a veryample invertible sheaf on X over Spec A.(a) for each i ≥ 0, H i(X, F) is a finitely generated A-module;(b) there is an integer n0, depending on F, such that for each i > 0 and each n ≥ n0, H i (X, F(n)) = 0.

2. Divisors on Curves

Now we turn to divisors on algebraic curves. Given a nonsingular projective curve X and a line bundle
L on X, the corresponding divisor of zeroes of global sections of L are formal linear combinationsof closed points on X. Given p ∈ X, the map D 7Ï D + p of divisors induces a map of linear systems
|D| → |D + p|
2.1 Proposition. Let D be a divisor on X. Then(a) the complete linear system |D| has no base points if and only if for every point p ∈ X,

dim |D − p| = dim |D| − 1;
(b) D is very ample if and only if for every two points p, q ∈ X (including the case p = q),

dim |D − p − q| = dim |D| − 2.

Proof. We have the following short exact sequence of line bundles
0 → L(D − p) → L(D) → k(p) → 0

which induces an exact sequence of global sections
0 → Γ(X, L(D − p)) → Γ(X, L(D)) → k,

so that dim |D − p| is either dim |D| or dim |D| − 1 and the map φ : |D − p| → |D| is injective. φ issurjective if and only if p is a base point, and we concludes (a).If D is very ample, D has no base points, so we must have dim |D − p − q| = dim |D| − 2. Conversely,it follows from the condition and (a) that |D| has no base points, and we need to show it separates pointsand tangent directions. Let p, q ∈ X be distinct points, the existence of sections on |D| non-vanishing on
p is equivalent to saying p is not a base point of |D|, so equivalently dim |D −p| = dim |D|−1. Thereforeseparating points is equivalent to p, q not being basepoints of |D|, which is clear from the condition.Now fix p ∈ X, note that dim TpX = 1, tangent vector separation is equivalent to saying the existence ofa divisor D′ ∈ |D| such that p has multiplicity 1, since dim TpD′ = 0 if p has multiplicity 1 in D′ and 1 ifhaving higher multiplicity. But having multiplicity 1 is equivalent to saying p is not a basepoint of thelinear system |D − p|, which is equivalent to dim |D − 2p| = dim |D| − 2. Therefore D is very ample andwe have shown (b).
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We conclude this section with a result on reducing the dimension of the projective space that Xcan be closedly immersed into. Assume that we already have a closed immersion X ↪Ï Pn, and let
O ∈ Pn \ X be any point. We define a map φ : X → Pn−1 as follows: put O = [1 : 0 : · · · : 0] ∈ Pn and
D∞ = {[0 : a1 : · · · : an]|ai ∈ k} be the divisor at infinity. For each x ∈ X, we let φ(x) be the intersectionof the unique line passing through O and x with D∞. This map is clearly well-defined and is algebraic.
2.2 Definition. We define the secant line determined by p, q ∈ X to be the line in Pn joining p and
q. If p is a point of X, the tangent line to X at p is the unique line L ⊆ Pn passing through p, whosetangent line Tp(L) is equal to Tp(X) as a subspace of Tp (Pn).
2.3 Proposition. φ is a closed immersion if and only if(a) O is not on any secant line of X, and

(b) O is not on any tangent line of X.
Proof. Consider the dimension n − 1 linear system in |OPn (1)| with O as the common base point.Intersection of any divisor D ∈ |OPn (1)| with X gives a divisor on X, with φ the corresponding morphisminto Pn−1. The condition listed in the Proposition is then equivalent to the separation of points andtangent vectors condition, hence the conclusion.

3. Framed Curves

In this section, we will give a coarse analysis of moduli space of pseudo-holomorphic spheres in Pd ofdegree d. Write
M0,0(Pd, d)for the moduli space. Let F be the Zariski open subset of M0,0 (

Pd, d
) consisting of nodal holomorphicspheres not contained in any hyperplanes of Pd, and let

univ : C → F

be the universal curve, where the preimage univ−1(F ) is the curve F in Pd.
3.1 Lemma. Both C and F are quasi-projective smooth varieties.
Proof. Note that M0,0 (

Pd, d
) is a projective orbifold, where the smooth locus consists of points of trivialautomorphism group. Given an element u : Σ → Pd of F, the pull-back u∗OPd (1) has degree d on Σ,and since u(Σ) does not lie inside any hyperplanes, we get a canonical basis of sections {s1, · · · , sd} ⊆

H0 (Σ, u∗OPd (1)). Therefore we obtain a pair (Σ, u∗OPd (1), φF ) where F comes from linear hyperplanes.Conversely, given such a pair (Σ, L, F ) where L is a line bundle over Σ of degree d and F a frameof H0 (Σ, L), a choice of basis of H0 (Σ, L) induces an embedding of Σ into Pd not contained in anyhyperplanes, so we have a bijection between F and the space of pairs (Σ, L, F ).The automorphism group of the pair (Σ, L, F ) is an automorphism group of Σ that lifts to an auto-morphism of L and fixes the basis F , so should act on H0(Σ, L) trivially. Over each unstable componentof Σ, L has strictly positive degree so that there are sections of L vanishing on all other components, andhence the automorphism group should fix the dual graph of Σ, and hence fixing each components. Sincethe dual graph is a tree, leaves are unstable and the automorphism group must fix the unstable com-ponent pointwise. This implies that the automorphism group of (Σ, L, F ) is trivial, and the smoothnessfollows.
3.2 Definition. Let Σ be a genus 0 nodal curve. A domain map is an inclusion map ι : Σ ↪Ï C so that
ι is an isomorphism onto a fiber of the universal curve over F.
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3.3 Lemma. Let Σ be a genus 0 nodal curve and let Ω ∈ Ω2(Σ) a closed 2-form representing an integralcohomology class. Then there exists a unique Hermitian line bundle on Σ up to isomorphism whosecurvature is −2πiΩ.
3.4 Definition. For any nodal connected genus zero curve Σ and for any 2-form Ω on Σ admitting anintegral lift, we define LΩ to be a Hermitian line bundle whose curvature is −2πiΩ. We write ⟨−, −⟩Ωfor its associated Hermitian metric.
3.5 Definition. A framed genus 0 curve in X is a tuple (u, Σ, F ) where(a) Σ is a genus zero nodal curve;(b) u : Σ → X is a smooth map representing β so that the degree of Lu∗Ω is strictly positive on eachunstable component of Σ;(c) F = (f0, · · · , fd) is a basis of H0 (Lu∗Σ) so that the Hermitian matrix

H (u, Σ, F ) := (∫
Σ⟨fi, fj⟩u∗Ω

)
i,j=0,··· ,dhas positive eigenvalues.

4. Hörmander’s Peak Sections and Transversality

In this section, we briefly explains the construction of “peak sections” that will play a role in achievingtransversality for thickenings of moduli spaces of holomorphic curves. We explain the setting in a slightlymore general way: consider a compact Kähler manifold (Y, JY , ω̂) without boundary of dimension m, andchoose a Hermitian vector bundle Ê together with an ample line bundle L on Y . We write Herm(Ê, Ê)for the bundle of hermitian endomorphisms of Ê. With the given metric, cup product by ω̂ induces adual map
Λω̂ : p,q∧

T∗Y ⊗ Herm(Ê, Ê) →
p−1,q−1∧

T∗Y ⊗ Herm(Ê, Ê)analoguous to the Lefschetz operator. On the other hand, recall that a hermitian connection ∇ is a map
∇ : Ê → T∗Y ⊗ Êwhich preserves the hermitian metric on Ê and is holomorphic for JY . The curvature of ∇ can then bewritten as

RÊ = ∇Ê ◦ ∇Ê : Ê → ∧2T∗Y ⊗ Ê,

which is equivalently a section of the bundle 1,1∧
T∗Y ⊗ Herm(Ê, Ê), so that iRÊ is a section of 1,1∧

T∗Y ⊗

Herm(Ê, Ê). Wedge sum by iRÊ induces a map of bundles p,q∧
T∗Y ⊗ Herm(Ê, Ê) →

p+1,q+1∧
T∗Y ⊗Herm(Ê, Ê).

4.1 Theorem (Hörmander). Let p, q ∈ N and suppose that the commutator
A := [iRÊ, Λω̂] : p,q∧

T∗Y ⊗ Herm(Ê, Ê) →
p,q∧

T∗Y ⊗ Herm(Ê, Ê)
is positive definite on each fiber. Let cÊ be the L∞ norm of A and define c := c−1

Ê . Then for each
g ∈ L2 (

∧p,qT∗Y ⊗ Ê
) satisfying ∂̄g = 0, there exists f ∈ L2 (

∧p,q−1T∗Y ⊗ Ê
) satisfying ∥f∥L2 ≤ c∥g∥L2and ∂̄f = g .
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Fix an effective divisor D, we can extend Hörmander’s result to vector bundles of the form Ê ⊗ O(D)where we choose a hermitian metric on OY (D) making the commutator [iRÊ⊗OY (D), Λω̂] positive definiteon (p, q)-forms.
4.2 Lemma. If g = 0 in a small neighbourhood of D, tand we set c = c−1

Ê⊗OY (D), then we can find f with
f |D = 0.
Proof. Note that if g = 0 in a small neighbourhood of D, then g belongs to sections of the line bundle
Ê ⊗ OY (D), and Hörmander’s result applies to give f ∈ L2 (

∧p,q−1T∗Y ⊗ Ê ⊗ OY (D)) with ∂̄f = g and
∥f∥L2 ≤ c∥g∥L2 . Clearly f |D = 0.The key Lemma of this section is the following “existence of peak sections”:
4.3 Lemma. Fix an effective divisor D ⊆ Y and a point x ∈ Y \ D. Let e ∈ Ê|x , and let δe be the Diracdelta section at x with value e. There are holomorphic sections sk and šk of Ê ⊗ Lk and Lk respectively,for k ∈ N, so that

• ⟨sk, šk⟩ → δe in the sense of distributions as k → ∞;
• sk and šk vanish along D.

Proof. Based on [Tia90], there exists a sequence of holomorphic sections (šk)k∈N of Lk where the normof šk converges to the Dirac delta function at x. Consider a smooth section σ ∈ C∞(Ê) with σ (x) = eand is holomorphic in a neighbourhood of x. Define s′
k := σ ⊗ šk, then we can find section (gk)k∈N of(Ê ⊗ Lk)k∈N = (∧m,0 Y ∗Y ⊗ Ê′

k

)
k∈N

such that the L2-norm of gk goes to 0 as k → ∞ and ∂̄gk = ∂̄s′
k in∧m,1 T∗Y ⊗ Ê′

k for each k ∈ N. Define sk := s′
k − gk for each k, then ⟨sk, šk⟩, for k ∈ N, converges inthe sense of distributions to the limit of ⟨s′

k, š′
k⟩ as k → ∞, which is δe. Imposing Lemma 4.2, we canachieve that σ = 0 near D, so that both sk and šk vanish along D for each k.
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