Linear Systems and Peak Sections

Si-Yang Liu

November 12, 2024

In this talk, we will introduce some algebro-geometric notions on linear systems on curves, and their roles in proving transversality for moduli spaces. We will roughly follow [\[Har77\]](#page-4-0).

1. Linear Systems

Let *X* be a nonsingular projective variety over a ring *k* and let \mathcal{L} be a line bundle on *X*. For each non-zero global section $s \in \Gamma(X, \mathcal{L})$, we can define the **divisor of zeroes** of *s*, denoted $D = (s)_0$, to be the hypersurface defined by the equation $s = 0$. Geometrically, we have

1.1 PROPOSITION. Let D_0 be a divisor on X with $\mathcal{L} = \mathcal{L}(D_0)$ be the corresponding line bundle on X, then

- (a) for each nonzero $s \in \Gamma(X, \mathcal{L})$, the divisor of zeros $(s)_0$ is an effective divisor linearly equivalent to D_0 ;
- (b) every effective divisor linearly equivalent to D_0 is $(s)_0$ for some $s \in \Gamma(X, \mathcal{L})$;
- (c) two sections $s, s' \in \Gamma(X, \mathcal{L})$ have the same divisor of zeros if and only if there is a $\lambda \in k^*$ with $s' = \lambda s$.

Based on the definition, we have

1.2 Definition. A **linear system** d on *X* is the projectivization of a linear subspace of Γ(*X, L*). The **dimension** of $\mathfrak d$ is the dimension of the corresponding projective space.

A point $p \in X$ is a **base point** of a linear system \mathfrak{d} if $p \in \text{supp } D$ for all $D \in \mathfrak{d}$.

It's clear from the definition that

1.3 LEMMA. *p* is a base point of $\mathfrak d$ if and only if for all $s \in \mathfrak d$, $s(p) = 0$. In particular, $\mathfrak d$ is base-point free if and only if $\mathcal L$ is generated by global sections.

Consider the largest linear system $\mathfrak{d} = \mathbb{P}\Gamma(X, \mathcal{L})$. A choice of basis of \mathfrak{d} induces a map $\varphi = (s_1 : \cdots :$ *s*ⁿ): *X* → \mathbb{P}^{n-1} if ∂ is base-point free. Further more,

1.4 DEFINITION. \mathfrak{d} is said to **separate points** if for any two distinct points $p, q \in X$, there is $D \in \mathfrak{d}$ such that $p \in \text{supp } D$ and $q \notin \text{supp } D$.

∂ is said to **separate tangent vectors** if given a closed point $p \in X$ and a tangent vector $t \in T_p X$, there is $D \in \mathfrak{d}$ such that $p \in \text{supp } D$ but $t \notin T_p(D)$.

1.5 Proposition. *φ* is a closed immersion if and only if d is base-point free, separates points and tangent vectors.

1.6 DEFINITION. A line bundle $\mathcal L$ over X is ample if there exists m so that $\mathcal L^{\otimes m}$ is very ample, i.e. it's base-point free and the corresponding morphism *φ* is a closed immersion.

1.7 PROPOSITION. Equivalently, \mathcal{L} is ample if and only if for every coherent sheaf $\mathcal F$ on X, there is an *m*₀ so that for all $m \ge m_0$, the sheaf $\mathcal{F} \otimes \mathcal{L}^{\otimes m}$ is generated by global sections.

Recall that there is a sheaf *O***P***ⁿ* (1) on **P** *ⁿ* dual to the tautological line bundle *O*(*−*1), which under immersion *φ* pulls back to a line bundle on *X*.

1.8 PROPOSITION. We have $\mathcal{L} \simeq \varphi^* \mathcal{O}_{\mathbb{P}^n}(1)$ if \mathcal{L} is very ample.

We conclude this section with Serre's vanishing theorem:

1.9 THEOREM (Serre). Let *X* be a projective scheme over a noetherian ring *A*, and let $O_X(1)$ be a very ample invertible sheaf on *X* over Spec *A*.

- (a) for each $i \geq 0$, $H^i(X, \mathcal{F})$ is a finitely generated *A*-module;
- (b) there is an integer n_0 , depending on $\mathcal F$, such that for each $i > 0$ and each $n \ge n_0$, $H^i(X, \mathcal F(n)) = 0$.

2. Divisors on Curves

Now we turn to divisors on algebraic curves. Given a nonsingular projective curve *X* and a line bundle *L* on *X*, the corresponding divisor of zeroes of global sections of *L* are formal linear combinations of closed points on *X*. Given $p \in X$, the map $D \mapsto D + p$ of divisors induces a map of linear systems $|D| \rightarrow |D + p|$

2.1 Proposition. Let *D* be a divisor on *X*. Then

(a) the complete linear system |D| has no base points if and only if for every point $p \in X$,

$$
\dim |D - p| = \dim |D| - 1;
$$

(b) *D* is very ample if and only if for every two points $p, q \in X$ (including the case $p = q$),

$$
\dim |D - p - q| = \dim |D| - 2.
$$

Proof. We have the following short exact sequence of line bundles

$$
0 \to \mathcal{L}(D - p) \to \mathcal{L}(D) \to k(p) \to 0
$$

which induces an exact sequence of global sections

$$
0 \to \Gamma(X, \mathcal{L}(D - p)) \to \Gamma(X, \mathcal{L}(D)) \to k,
$$

so that dim $|D - p|$ is either dim $|D|$ or dim $|D| - 1$ and the map $\varphi: |D - p| \to |D|$ is injective. φ is surjective if and only if *p* is a base point, and we concludes (a).

If *D* is very ample, *D* has no base points, so we must have dim $|D - p - q| = \dim |D| - 2$. Conversely, it follows from the condition and (a) that *|D|* has no base points, and we need to show it separates points and tangent directions. Let *p, q ∈ X* be distinct points, the existence of sections on *|D|* non-vanishing on *p* is equivalent to saying *p* is not a base point of *|D|*, so equivalently dim *|D −p|* = dim *|D| −*1. Therefore separating points is equivalent to *p, q* not being basepoints of *|D|*, which is clear from the condition. Now fix $p \in X$, note that dim $T_pX = 1$, tangent vector separation is equivalent to saying the existence of a divisor $D' \in |D|$ such that p has multiplicity 1, since $\dim T_pD' = 0$ if p has multiplicity 1 in D' and 1 if having higher multiplicity. But having multiplicity 1 is equivalent to saying *p* is not a basepoint of the linear system $|D - p|$, which is equivalent to dim $|D - 2p| = \dim |D| - 2$. Therefore *D* is very ample and we have shown (b). \Box

We conclude this section with a result on reducing the dimension of the projective space that *X* can be closedly immersed into. Assume that we already have a closed immersion $X \hookrightarrow \mathbb{P}^n$, and let $O \in \mathbb{P}^n \setminus X$ be any point. We define a map $\varphi: X \to \mathbb{P}^{n-1}$ as follows: put $O = [1:0:\cdots:0] \in \mathbb{P}^n$ and $D_{\infty} = \{0 : a_1 : \cdots : a_n | a_i \in k\}$ be the divisor at infinity. For each $x \in X$, we let $\varphi(x)$ be the intersection of the unique line passing through *O* and *x* with D_{∞} . This map is clearly well-defined and is algebraic. 2.2 DEFINITION. We define the **secant line** determined by $p, q \in X$ to be the line in \mathbb{P}^n joining p and *q*. If *p* is a point of *X*, the **tangent line** to *X* at *p* is the unique line $L \subseteq \mathbb{P}^n$ passing through *p*, whose tangent line $T_p(L)$ is equal to $T_p(X)$ as a subspace of $T_p(\mathbb{P}^n)$.

2.3 Proposition. *φ* is a closed immersion if and only if

- (a) *O* is not on any secant line of *X*, and
- (b) *O* is not on any tangent line of *X*.

Proof. Consider the dimension $n-1$ linear system in $|\mathcal{O}_{\mathbb{P}^n}(1)|$ with *O* as the common base point. Intersection of any divisor $D \in |O_{\mathbb{P}^n}(1)|$ with *X* gives a divisor on *X*, with φ the corresponding morphism into **P** *n−*1 . The condition listed in the Proposition is then equivalent to the separation of points and tangent vectors condition, hence the conclusion. \Box

3. Framed Curves

In this section, we will give a coarse analysis of moduli space of pseudo-holomorphic spheres in \mathbb{P}^d of degree *d*. Write

$$
\mathscr{M}_{0,0}(\mathbb{P}^d,d)
$$

for the moduli space. Let *F* be the Zariski open subset of *M*⁰*,*⁰ $\overline{ }$ \mathbb{P}^{d} , d) consisting of nodal holomorphic spheres not contained in any hyperplanes of \mathbb{P}^d , and let

$$
\text{univ: } \mathcal{G} \to \mathcal{F}
$$

be the **universal curve**, where the preimage univ*[−]*¹ (*F*) is the curve *F* in **P** *d* .

3.1 LEMMA. Both G and $\mathcal F$ are quasi-projective smooth varieties.

Proof. Note that $\mathcal{M}_{0,0}$ $\overline{1}$ \mathbb{P}^d , $d)$ is a projective orbifold, where the smooth locus consists of points of trivial automorphism group. Given an element $u\colon \Sigma\to \mathbb{P}^d$ of $\mathcal F$, the pull-back $u^*\mathbb{O}_{\mathbb{P}^d}(1)$ has degree d on Σ , and since $u(\Sigma)$ does not lie inside any hyperplanes, we get a canonical basis of sections $\{s_1, \dots, s_d\} \subset$ *H*⁰ (Σ, *u*[∗]*O*_P*d*(1)). Therefore we obtain a pair (Σ, *u*[∗]*O*_P*d*(1), *ϕ_F*) where *F* comes from linear hyperplanes. Conversely, given such a pair (Σ*, L, F*) where *L* is a line bundle over Σ of degree *d* and *F* a frame of $H^0(\Sigma, L)$, a choice of basis of $H^0(\Sigma, L)$ induces an embedding of Σ into \mathbb{P}^d not contained in any hyperplanes, so we have a bijection between $\mathcal F$ and the space of pairs (Σ, L, F) .

The automorphism group of the pair (Σ, L, F) is an automorphism group of Σ that lifts to an automorphism of L and fixes the basis F , so should act on $H^0(\Sigma,L)$ trivially. Over each unstable component of Σ, *L* has strictly positive degree so that there are sections of *L* vanishing on all other components, and hence the automorphism group should fix the dual graph of Σ , and hence fixing each components. Since the dual graph is a tree, leaves are unstable and the automorphism group must fix the unstable component pointwise. This implies that the automorphism group of (Σ, L, F) is trivial, and the smoothness follows. \Box

3.2 DEFINITION. Let Σ be a genus 0 nodal curve. A **domain map** is an inclusion map $\iota: \Sigma \hookrightarrow \mathcal{C}$ so that *ι* is an isomorphism onto a fiber of the universal curve over *F*.

3.3 LEMMA. Let Σ be a genus 0 nodal curve and let $\Omega \in \Omega^2(\Sigma)$ a closed 2-form representing an integral cohomology class. Then there exists a unique Hermitian line bundle on Σ up to isomorphism whose curvature is *−*2*πi*Ω.

3.4 DEFINITION. For any nodal connected genus zero curve Σ and for any 2-form Ω on Σ admitting an integral lift, we define $L_Ω$ to be a Hermitian line bundle whose curvature is $-2πiΩ$. We write $\langle -, - \rangle_Ω$ for its associated Hermitian metric.

3.5 DEFINITION. A **framed genus** 0 **curve** in *X* is a tuple (u, Σ, F) where

- (a) Σ is a genus zero nodal curve;
- (b) $u: \Sigma \to X$ is a smooth map representing β so that the degree of $L_{u^*\Omega}$ is strictly positive on each unstable component of Σ ;
- (c) $F = (f_0, \dots, f_d)$ is a basis of $H^0(L_{u^*\Sigma})$ so that the Hermitian matrix

$$
\mathfrak{F}(u,\Sigma,F):=\left(\int_{\Sigma}\langle f_i,f_j\rangle_{u^*\Omega}\right)_{i,j=0,\cdots,d}
$$

has positive eigenvalues.

4. Hörmander's Peak Sections and Transversality

In this section, we briefly explains the construction of "peak sections" that will play a role in achieving transversality for thickenings of moduli spaces of holomorphic curves. We explain the setting in a slightly more general way: consider a compact Kähler manifold $(Y, J_Y, \hat{\omega})$ without boundary of dimension *m*, and choose a Hermitian vector bundle \hat{E} together with an ample line bundle *L* on *Y*. We write Herm(\hat{E} , \hat{E}) for the bundle of hermitian endomorphisms of *E*ˆ. With the given metric, cup product by *ω*ˆ induces a dual map

$$
\Lambda_{\hat\omega}\colon\bigwedge^{p,q}T^*Y\otimes\text{Herm}(\hat E,\hat E)\to\bigwedge^{p-1,q-1}T^*Y\otimes\text{Herm}(\hat E,\hat E)
$$

analoguous to the Lefschetz operator. On the other hand, recall that a hermitian connection *∇* is a map

$$
\nabla\colon \hat E\to\,^*Y\otimes \hat E
$$

which preserves the hermitian metric on \hat{E} and is holomorphic for *J_Y*. The curvature of ∇ can then be written as

$$
R_{\hat{E}} = \nabla_{\hat{E}} \circ \nabla_{\hat{E}} \colon \hat{E} \to \wedge^2 T^* Y \otimes \hat{E},
$$

which is equivalently a section of the bundle $\bigwedge^{1,1}$ $T^*Y \otimes \overline{{\rm Herm}(\hat E,\hat E)}$, so that $iR_{\hat E}$ is a section of $\bigwedge^{1,1}$ *T [∗]Y ⊗* ${\rm Herm}(\hat E,\hat E).$ Wedge sum by $iR_{\hat E}$ induces a map of bundles $\bigwedge^{p,q}$ $T^*Y \otimes \text{Herm}(\hat{E}, \hat{E}) \rightarrow$ $p+1, q+1$ *T [∗]Y ⊗* $Herm(\hat{E}, \hat{E}).$

4.1 THEOREM (Hörmander). Let $p, q \in \mathbb{N}$ and suppose that the commutator

$$
A:= [iR_{\hat E},\Lambda_{\hat\omega}]\colon \bigwedge^{p,q}T^*Y\otimes\text{Herm}(\hat E,\hat E)\to \bigwedge^{p,q}T^*Y\otimes\text{Herm}(\hat E,\hat E)
$$

is positive definite on each fiber. Let $c_{\hat{E}}$ be the L^{∞} norm of *A* and define $c := c_{\hat{E}}^{-1}$. Then for each $g\,\in\, L^2\left(\wedge^{p,q}T^*Y\otimes \hat{E}\right)$ satisfying $\bar{\partial}g\,=\,0$, there exists $f\,\in\, L^2\left(\wedge^{p,q-1}T^*Y\otimes \hat{E}\right)$ satisfying $\|f\|_{L^2}\,\leq\,c\,\|g\|_{L^2}$ and $\bar{\partial}f = q$.

Fix an effective divisor *D*, we can extend Hörmander's result to vector bundles of the form $\hat{E} \otimes \mathcal{O}(D)$ where we choose a hermitian metric on $\mathbb{O}_Y(D)$ making the commutator $[iR_{\hat{E}\otimes\mathbb{O}_Y(D)}$, $\Lambda_{\hat{\omega}}]$ positive definite on (*p, q*)-forms.

 4.2 LEMMA. If $g = 0$ in a small neighbourhood of *D*, tand we set $c = c_{\hat{E} \otimes 0_Y(D)}^{-1}$, then we can find f with $f|_D = 0.$

Proof. Note that if $g = 0$ in a small neighbourhood of *D*, then g belongs to sections of the line bundle $\hat E\otimes\mathbb{O}_Y(D)$, and Hörmander's result applies to give $f\,\in\,L^2\left(\wedge^{p,q-1}T^*Y\otimes \hat E\otimes\mathbb{O}_Y(D)\right)$ with $\bar\partial f\,=\,g$ and \Box *∥f* $|| f ||_{L^2}$ $\leq c$ $|| g ||_{L^2}$. Clearly $f |_{D} = 0$.

The key Lemma of this section is the following "existence of peak sections":

4.3 LEMMA. Fix an effective divisor $D \subseteq Y$ and a point $x \in Y \setminus D$. Let $e \in \hat{E}|_x$, and let δ_e be the Dirac delta section at x with value $e.$ There are holomorphic sections s_k and \check{s}_k of $\hat{E}\otimes L^k$ and L^k respectively, for $k \in \mathbb{N}$, so that

- $\langle s_k, \check{s}_k \rangle \to \delta_e$ in the sense of distributions as $k \to \infty$;
- s_k and \check{s}_k vanish along *D*.

Proof. Based on [\[Tia90\]](#page-4-1), there exists a sequence of holomorphic sections $(\xi_k)_{k \in \mathbb{N}}$ of L^k where the norm of \check{s}_k converges to the Dirac delta function at *x*. Consider a smooth section $\sigma \in C^{\infty}(\hat{E})$ with $\sigma(x) = e$ and is holomorphic in a neighbourhood of *x*. Define $s'_k \coloneqq \sigma \otimes \check{s}_k$, then we can find section $(g_k)_{k \in \mathbb{N}}$ of and is notomorphic in a neighbourhood of x. Define $s_k := \sigma \otimes s_k$, then we can find section $(g_k)_{k \in \mathbb{N}}$ of $(\hat{E} \otimes L^k)_{k \in \mathbb{N}} = (\bigwedge^{m,0} Y^* Y \otimes \hat{E}'_k)_{k \in \mathbb{N}}$ such that the L^2 -norm of g_k goes to 0 as $k \to \in$ $\bigwedge^{m,1} T^*V \otimes \hat{E}'_k$ for each $k \in \mathbb{N}$. Define $s_k \coloneqq s'_k - g_k$ for each k, then $\langle s_k, \check{s}_k \rangle$, for $k \in \mathbb{N}$, converges in the sense of distributions to the limit of $\langle s'_k, \check{s}'_k \rangle$ as $k \to \infty$, which is δ_e . Imposing Lemma [4.2,](#page-4-2) we can achieve that $\sigma = 0$ near *D*, so that both s_k and \check{s}_k vanish along *D* for each *k*. \Box

REFERENCES

- [Har77] Robin Hartshorne. *Algebraic geometry*, volume No. 52 of *Graduate Texts in Mathematics*. Springer-Verlag, New York-Heidelberg, 1977.
- [Tia90] Gang Tian. On a set of polarized Kähler metrics on algebraic manifolds. *J. Differential Geom.*, 32(1):99–130, 1990. URL: <http://projecteuclid.org/euclid.jdg/1214445039>.