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Abstract

These are rough notes for talks at the Southern California Symplectothon (Nov 9–10, 2024)
about global Kuranishi charts for Gromov–Witten moduli spaces, following [AMS21] for the
genus 0 case and [HS24] for the higher genus case.
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1 Genus 0 case

Our objective is to understand the proof of the following statement.

Theorem 1.1 ([AMS21]). Let (X,ω) be a closed symplectic manifold, A ∈ H2(X,Z) and n ≥ 0.
Given an ω-tame almost complex structure J , the moduli space M0,n(X,A; J) admits a well-
defined equivalence class of oriented global Kuranishi charts having the correct virtual dimension.
Moreover, given another ω-tame almost complex structure J ′, these global Kuranishi charts for
M0,n(X,A; J) and M0,n(X,A; J

′) can be chosen to be oriented cobordant over M0,n ×Xn.

We will follow [AMS21, §6]; see also the summary in [HS24, §2.1]. For simplicity, we will ignore
marked points and focus on the case n = 0 to illustrate the key ideas. The proof will take up a
number of steps. Each auxiliary choice we make will be indicated by a bullet point.
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1.1 Line bundle on target

Approximate ω in C∞ to get a symplectic form Ω taming J with [Ω] ∈ H2(X,Q) ⊂ H2(X,R).
Multiply Ω by a large integer to assume that [Ω] lifts to a class in γ ∈ H2(X,Z). Let LΩ → X be
a C∞ complex line bundle such that c1(LΩ) = γ.

Lemma 1.2. There is a Hermitian metric ⟨·, ·⟩ and a compatible Hermitian connection ∇ on LΩ

such that the curvature form of ∇ is given by −2πiΩ.

Proof. Choose any Hermitian metric ⟨·, ·⟩ on LΩ and any compatible Hermitian connection ∇′ on
LΩ and write the curvature as −2πiΩ′. Since γ is a common integral lift of [Ω] and [Ω′], we can
find a smooth (real) 1-form β such that Ω′ = Ω + dβ. The connection ∇ = ∇′ + 2πiβ now is also
Hermitian for ⟨·, ·⟩ and has curvature given by −2πiΩ.

• Fix the line bundle LΩ, a metric and a connection on it as in 1.2. Write d := [Ω] ·A ≥ 1.

1.2 Framed curves

Let u : Σ → X be a J-holomorphic genus 0 stable map with u∗[Σ] = A.

The line bundle u∗LΩ, equipped with (u∗∇)0,1, is a Hermitian holomorphic line bundle whose
Chern connection has curvature form −2πi · u∗Ω. Since Ω tames J , stability of u : Σ → X implies
that

∫
u∗Ω ≥ 0 (resp. > 0) on every irreducible (resp. unstable irreducible) component of Σ. Thus,

u∗LΩ has degree ≥ 0 on each irreducible component of Σ.

Lemma 1.3. The line bundle u∗LΩ is basepoint free, h1(Σ, u∗LΩ) = 0 and h0(Σ, u∗LΩ) = d + 1.
If F = (f0, . . . , fd) is a C-basis of H0(Σ, u∗LΩ), then ϕF := [f0 : · · · : fd] : Σ → Pd is a stable map
of degree d which is non-degenerate, i.e., not contained in any hyperplane.

Proof. On a nodal curve Σ of genus 0, there is a unique holomorphic line bundle up to isomorphism
for each multi-degree. Using this, the result is clear for Σ = P1 since we must have u∗LΩ ≃ OP1(d).
Use induction on the number of irreducible components to complete the proof.

Note that there is a GLd+1(C) worth of choices for F . Later, when we thicken the ∂̄-equation,
we will need to break this GLd+1(C) symmetry and reduce to only a U(d+ 1) symmetry. For this
purpose, it will be useful to distinguish a subclass of ‘unitary’ F among all possible F .

Lemma 1.4. In 1.3, the (d+ 1)× (d+ 1) Hermitian matrix

H(Σ, u, F ) :=

(∫
Σ
⟨fi, fj⟩u∗Ω

)
0≤i,j≤d

(1.2.1)

is positive definite.

Proof. Indeed, for 0 ̸= v = (v0, . . . , vd)
⊤ ∈ Cd+1, we have

v†H(Σ, u, F )v =

∫
Σ
∥v0f0 + · · ·+ vdfd∥2 u∗Ω > 0,

by unique continuation for 0 ̸= v0f0 + · · ·+ vdfd ∈ H0(Σ, u∗LΩ) and the Ω-tameness of J .
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Relaxing J-holomorphicity of u in the above discussion leads to the following notion.

Definition 1.5. A ‘framed genus 0 curve’ in X of class A is a tuple (Σ, u, F ) where

(a) Σ is a nodal genus 0 curve,

(b) u : Σ → X is a smooth map with u∗[Σ] = A which is stable, i.e.,
∫
u∗Ω ≥ 0 (resp. > 0) on each

irreducible (resp. unstable irreducible) component of the curve Σ,

(c) F = (f0, . . . , fd) is a ‘framing’, i.e., complex basis of the space H0(Σ, u∗LΩ) of holomorphic
global sections of u∗LΩ, equipped with the holomorphic structure given by (u∗∇)0,1, such that
the (d+ 1)× (d+ 1) Hermitian matrix H(Σ, u, F ) from (1.2.1) is positive definite.

An ‘equivalence’ of framed genus 0 curves (Σ, u, F ) and (Σ′, u′, F ′) in X is a biholomorphic map
φ : Σ → Σ′ such that u′ ◦ φ = u and φ∗F ′ = F . We call a framed genus 0 curve ‘unitary’ if
H(Σ, u, F ) is the identity matrix.

To make sense of 1.5(c), note that 1.3 used only the fact that u∗LΩ has degree≥ 0 on each irreducible
component. Thus, 1.5(b) guarantees that for any framed curve (Σ, u, F ), the line bundle u∗LΩ is
automatically basepoint free and we have h0(Σ, u∗LΩ) = d+ 1 and h1(Σ, u∗LΩ) = 0.

Fact. The open sub-orbifold M∗
0,0(Pd, d) ⊂ M0,0(Pd, d), consisting of non-degenerate stable maps,

is in fact a smooth variety of the expected dimension. It carries a universal family

C Pd

M∗
0,0(Pd, d)

ev

π (1.2.2)

whose total space C is also a smooth variety.

As in 1.3, any framed genus 0 curve (Σ, u, F ) gives rise to a non-degenerate degree d map

ϕF = [f0 : · · · : fd] : Σ → Pd

Thus, ϕF induces an identification of ιF : Σ ↪→ C with a fibre of π in (1.2.2).

1.3 Achieving transversality

• Fix a relatively ample line bundle L on C → M∗
0,0(Pd, d), equipped with a Hermitian metric

so that the natural U(d+ 1) action on C lifts to a unitary action on the line bundle L.

• Fix a C-linear connection ∇C on T ∗0,1C, which is invariant under the U(d+ 1) action.

• Fix a C-linear connection ∇X on TX equipped with J .

• Fix a sufficiently large positive integer k ≫ 1.
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Remark 1.6. We may take L = ωπ ⊗ ev∗(OPd(3)) as in [FP97, §2.3] with a U(d + 1)-invariant

metric obtained by averaging, where ωπ is the relative dualizing line bundle of π : C → M∗
0,0(Pd, d).

Definition 1.7. We define K = (T , E , G, s, ψ) as follows.

(A) The ‘thickening’ T is the moduli space of tuples (Σ, u, F, η) where

(i) (Σ, u, F ) is a framed genus 0 curve in X of class A and

(ii) η ∈ Ek(Σ, u, F ) := H0(Σ, u∗TX ⊗ ι∗F (T
∗0,1C ⊗ L⊗k))⊗H0(Σ, ι∗FL⊗k),

and these satisfy the thickened ∂̄-equation

∂̄Ju+ ⟨η⟩ ◦ dι̃F = 0. (1.3.1)

Here, the holomorphic structures on ι∗F (T
∗0,1C) and u∗TX come from the connections ∇C and

∇X fixed above, ι̃F is the pullback of ιF : Σ ↪→ C to the normalization Σ̃ → Σ and the linear
map ⟨·⟩ is induced by the Hermitian inner product on L⊗k.

We have a natural projection T → M∗
0,0(Pd, d), given by (Σ, u, F, η) 7→ [ϕF : Σ → Pd].

(B) The ‘obstruction bundle’ E → T is the vector bundle1 whose fibre over (Σ, u, F, η) ∈ T is

Ek(Σ, u, F )⊕Hd+1,

with Hd+1 being the (real) vector space of (d+ 1)× (d+ 1) Hermitian matrices.

(C) The ‘obstruction section’ s is the section of E → T defined by

(Σ, u, F, η) 7→ (η, logH(Σ, u, F )),

where log denotes the inverse of the exponentiation map from (d + 1) × (d + 1) Hermitian
matrices to positive definite (d+ 1)× (d+ 1) Hermitian matrices.

(D) The ‘symmetry group’ G = U(d + 1) has a natural action on T , which lifts to E so that s
becomes a G-equivariant section.

(E) The ‘footprint map’

ψ : s−1(0)/G→ M0,0(X,A; J)

is induced by forgetting the framing.

Claim. In 1.7, the map ψ is a homeomorphism

Proof. Clearly, s−1(0) consists of framed curves (Σ, u, F ) such that ∂̄Ju = 0 and H(Σ, u, F ) = id.
Also, for A ∈ U(d+1), we have H(Σ, u, FA) = A† · H(Σ, u, F ) ·A. From this and 1.4, we conclude
that ψ is a bijection. We conclude using the standard fact: a continuous bijection from a compact
space to a Hausdorff space is automatically a homeomorphism.

1We haven’t yet explained why this fibrewise description fits into a vector bundle.
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Remark 1.8. The compact zero locus s−1(0) is completely independent (!) of all the auxiliary
choices except for LΩ with its Hermitian metric and compatible connection.

Fact (Hörmander peak sections trick, [AMS21, 6.24 and 6.26]). Let (Σ, u, F ) be a framed curve.
Define a sequence of finite dimensional vector spaces, indexed by k ≥ 1, as follows:

Wk := image

(
Ek(Σ, u, F )

⟨·⟩ ◦ dι̃F−−−−−→ Ω0,1(Σ̃, ũ∗TX)

)
.

Then, the subspaces Wk provide an L2 exhaustion of Ω0,1(Σ̃, ũ∗TX) as k → ∞. More precisely, for

any 0 ̸= η ∈ Ω0,1(Σ̃, ũ∗TX), we have the following: ∀ k ≫ 1, ∃ holomorphic sections

sk ∈ H0(Σ, u∗TX ⊗ ι∗F (T
∗0,1C ⊗ L⊗k)), tk ∈ H0(Σ, ι∗FL⊗k)

such that the section ⟨sk, tk⟩ ◦ dι̃F ∈ Ω0,1(Σ̃, ũ∗TX) has a non-trivial L2 pairing with η.

Corollary 1.9 (Transversality). ∃ k ≫ 1 such that for any (Σ, u, F, 0) ∈ s−1(0), the linearization

Ω0(Σ, u∗TX)⊕ Ek(Σ, u, F ) → Ω0,1(Σ̃, ũ∗TX) (1.3.2)

of the thickened ∂̄-equation (1.3.1) at (u, 0) is surjective and we have

H1(Σ, u∗TX ⊗ ι∗F (T
∗0,1C ⊗ L⊗k)) = 0 and H1(Σ, ι∗FL⊗k) = 0. (1.3.3)

In particular, in a G-invariant neighborhood of s−1(0), the projection map T → M∗
0,0(Pd, d) is a

topological submersion of the expected (relative) dimension and E → T defines a complex vector
bundle of the expected rank.

Proof. Given (Σ, u, F, 0) ∈ s−1(0), we can find k ≫ 1 so that (1.3.2) is surjective (by the Hörmander
peak sections trick) and (1.3.3) holds (by Serre vanishing [Har77, III.5.2]). Since s−1(0) is compact,
we can find k which works uniformly; see [HS24, 4.19] for a closely related argument.

This completes the construction of a global Kuranishi chart for M0,0(X,A; J) associated to the
auxiliary data (LΩ,L,∇C ,∇X , k).

1.4 Uniqueness

Let (LΩi ,Li,∇C
i ,∇X

i , ki) be two choices of auxiliary data for i = 0, 1.

Going through the above construction, we get integers di := [Ωi] · A ≥ 1, finite dimensional vector
spaces Eki(Σ, u, Fi) and global Kuranishi charts Ki = (Ti, Ei, Gi, si, ψi) for i = 0, 1.

We will show that K0 and K1 are equivalent by exhibiting a third global Kuranishi chart K01

which, roughly speaking, ‘interpolates’ between them. The definition of K01 imitates the usual
notion of ‘overlap charts’ in Kuranishi/implicit atlases.
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Definition 1.10. We define K01 = (T01, E01, G01, s01, ψ01) as follows.

(A) The ‘double thickening’ T01 is the moduli space of tuples (Σ, u, F0, F1, η0, η1) where

(i) (Σ, u, Fi) is a framed genus 0 curve in X of class A with respect to LΩi → X,

(ii) ηi ∈ Eki(Σ, u, Fi)

for i = 0, 1 and these satisfy the doubly-thickened ∂̄-equation

∂̄Ju+
∑
i=0,1

⟨ηi⟩ ◦ dι̃Fi = 0. (1.4.1)

(B) E01 = E0 ⊕ E1 → T01 is the vector bundle with fibre over (Σ, u, F0, F1, η0, η1) ∈ T01 given by⊕
i=0,1

Eki(Σ, u, Fi)⊕Hdi+1.

(C) The section s01 = (si)i=0,1 of E01 → T01 is defined by

si : (Σ, u, F0, F1, η0, η1) 7→ (ηi, logH(Σ, u, Fi)).

(D) The group G01 = G0 ×G1 is defined by Gi = U(di + 1) for i = 0, 1.

(E) The map

ψ01 : s
−1
01 (0)/G01 → M0,0(X,A; J)

is induced by forgetting the framings Fi for i = 0, 1.

As before, ψ01 is a homeomorphism and, in a G01-invariant neighborhood of s−1
01 (0), the space T01

is a manifold of the expected dimension and E01 → T01 is a vector bundle of the expected rank.

Claim. The global Kuranishi chart K01 is equivalent to Ki for i = 0, 1.

Proof. We suppress the ‘germ equivalence’ move for global Kuranishi charts from the discussion
since we work in a small neighborhood of the zero locus. Observe that P0 = s−1

1 (0) is cut-out
transversally near s−1

01 (0). Moreover, the natural projection π0 : P0 → T0 has the structure of a
G0-equivariant principal G1-bundle.

Consider the global Kuranishi chart K′ = (P0, π
∗
0E0, π∗0s0, G01, ψ01).

(I) Applying ‘group enlargement’ to K0 (with the group G1) yields K′.

(II) Applying ‘stabilization’ to K′ (with the vector bundle E1|P0) yields K01.

This shows that K0 is equivalent to K01. By symmetry, K1 is also equivalent to K01.

Remark 1.11. We omit the very similar proof for the cobordism statement in 1.1.
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2 Higher genus case

The following statement is an extension of 1.1 to all genera.

Theorem 2.1 ([HS24], [AMS24]). Let (X,ω) be a closed symplectic manifold, A ∈ H2(X,Z) and
g, n ≥ 0. Given an ω-tame almost complex structure J , the moduli space Mg,n(X,A; J) admits a
well-defined equivalence class of oriented global Kuranishi charts of the correct virtual dimension.
Moreover, given another ω-tame almost complex structure J ′, these global Kuranishi charts for
Mg,n(X,A; J) and Mg,n(X,A; J

′) can be chosen to be oriented cobordant over Mg,n ×Xn.

We will follow [HS24]; see [AMS24] for an alternate construction. Again, for simplicity, we focus
on the case n = 0 where we have no marked points. Given that we have already seen the proof of
1.1 in some detail, rather than giving a detailed proof of 2.1, we will only explain the key issues
encountered in going to higher genera and how we overcome them.

2.1 Key issues

The following is the main source obstacle to adapting the proof of 1.1 to get 2.1.

Fact. For a nodal curve Σ of genus g, isomorphism classes of topologically trivial holomorphic line
bundles on Σ form a complex g-dimensional Lie group Pic0(Σ), whose tangent space at the identity
is H1(Σ,OΣ). In particular, when g > 0, a holomorphic line bundle on Σ is not determined up to
isomorphism by its multi-degree.

To elaborate further, consider a J-holomorphic stable map u : Σ → X of genus g > 0.

(i) As u : Σ → X varies, the dimension of H0(Σ, u∗LΩ) may jump. E.g., this happens when
u : Σ → X has a positive genus ghost component.

Remedy. Replace u∗LΩ by another natural choice which is (very) ample and has vanishing
H1 on Σ. The standard replacement is ωΣ ⊗ (u∗LΩ)

⊗3, or a sufficiently high tensor power of
it, where ωΣ is the dualizing line bundle of Σ; see [FP97, §2.3] or [Sie98].

(ii) ‘Framing’ u : Σ → X using a basis F = (f0, . . . , fN ) of H0(Σ, ωΣ ⊗ (u∗LΩ)
⊗3) produces a

non-degenerate stable map ϕF = [f0 : · · · : fN ] : Σ → PN such that we have

ϕ∗F (OPN (1)) ≃ ωΣ ⊗ (u∗LΩ)
⊗3 (2.1.1)

as holomorphic line bundles. Deforming ϕF among non-degenerate stable maps to PN will,
in general, disturb (2.1.1). Thus, the space of ‘framed genus g curves’ in X may not project
submersively onto the space of non-degenerate stable maps to PN .

Remedy. Enlarge the notion of ‘framed curve’ to allow maps ϕF : Σ → PN for which we
only have a topological line bundle isomorphism (2.1.1). This restores submersivity but, to
compensate, we must record the difference [ϕ∗F (OPN (1))] − [ωΣ ⊗ (u∗LΩ)

⊗3] ∈ Pic0(Σ) as a
part of the obstruction section.
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2.2 Picard groups

We follow the exposition in [HS24, Appendix A].

Definition 2.2. We define (relative) Picard groups as follows.

(a) For a nodal curve Σ, define Pic(Σ) to be the group of (isomorphism classes of) holomorphic
line bundles on Σ under ⊗. Let Pic0(Σ) be its subgroup of topologically trivial line bundles.

(b) For a family π : C → S of nodal curves, define Pic(C/S) to be the space of pairs (s, [Ls]),
where s ∈ S and [Ls] ∈ Pic(Cs). Let Pic

0(C/S) be its subspace where [Ls] ∈ Pic0(Cs).

2.2.1 Single curve

Fix a nodal curve Σ of genus g. The exponential short exact sequence on Σ is:

0 → Z 2πi−−→ OΣ
exp−−→ O×

Σ → 0. (2.2.1)

Since Σ is connected, applying H0 to (2.2.1) preserves exactness. Thus, the long exact sequence in
cohomology gives the following exact sequence:

0 → H1(Σ,Z) 2πi−−→ H1(Σ,OΣ)
exp−−→ Pic(Σ)

c1−→ H2(Σ,Z) → 0, (2.2.2)

using the identification Pic(Σ) ≃ H1(Σ,O×
Σ) coming from the Čech description of sheaf cohomology

and the vanishing of H2(Σ,OΣ) coming from Σ being a 1-dimensional scheme. Thus, we have

coker
(
H1(Σ,Z) 2πi−−→ H1(Σ,OΣ)

)
exp−−→
≃

Pic0(Σ) := ker
(
Pic(Σ)

c1−→ H2(Σ,Z)
)
. (2.2.3)

Fact. The group Pic0(Σ) is naturally a complex g-dimensional Lie group, with tangent space at
the identity being H1(Σ,OΣ). This follows from the following more precise statement.

(i) If Σ is smooth, then H1(Σ,Z) 2πi−−→ H1(Σ,OΣ) is isomorphic to the inclusion of a discrete
lattice of rank 2g in the vector space Cg. Thus, Pic0(Σ) is a complex g-dimensional torus.

(ii) In general, let Γ = (V,E) be the dual graph of Σ. The vertices v ∈ V correspond to the

connected components Σ̃v of the normalization Σ̃ → Σ. The edges e ∈ E correspond to the
unordered pairs of points in Σ̃ that get identified to give the nodes qe ∈ Σ.

We then have a natural short exact sequence2

0 → H1(|Γ|,C×) → Pic0(Σ) →
∏
v∈V

Pic0(Σ̃v) → 0,

where |Γ| is the geometric realization of Γ viewed as a 1-dimensional simplicial complex.

2Its linearization is 0 → H1(|Γ|,C) → H1(Σ,OΣ) →
⊕

v∈V H1(Σ̃v,OΣ̃v
) → 0.
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2.2.2 Family of curves

Let π : C → S be a holomorphic family of nodal curves of genus g.

Fact (Consequence of [Har77, III.12.11]). There is a holomorphic rank g vector bundle

H∗
C/S := R1π∗OC

on S, which is compatible with pulling back families. Its fibre over s ∈ S is the g-dimensional
complex vector space H1(Cs,OCs).

Fact (Consequence of [HS24, A.7 and A.9]). The family version

exp : H∗
C/S → Pic0(C/S)

of the exponential map (2.2.3) is biholomorphic in a neighborhood of the zero section.

Remark 2.3. The full (relative) Picard group Pic(C/S) → S is badly behaved: it is non-separated
in general. Specifically, the image of the zero section S → Pic(C/S), s 7→ (s, [OCs ]) may not be
closed! Luckily, this pathology goes away when we restrict to Pic0(C/S) → S.

2.3 Construction

To define a global Kuranishi chart for Mg,0(X,A; J), make the following auxiliary choices.

• Choose a line bundle LΩ with metric and connection as in 1.2.

Write d := [Ω] ·A ≥ 1. Write Lu := ωΣ ⊗ (u∗LΩ)
⊗3 for any stable map u : Σ → X of genus g

in class A, with the holomorphic structure induced by the connection pulled back from LΩ.

• Choose a sufficiently large integer p≫ 1 so that for all stable maps u : Σ → X of genus g in

class A, the line bundle L⊗p
u is very ample and has vanishing H1.

Writem := p(2g − 2 + 3d), N := m− g, G := PGLN+1(C) and G := PU(N + 1). For a stable

map u : Σ → X as above, note that we have m = deg(L⊗p
u ) and N + 1 = h0(Σ,L⊗p

u ).

Define a ‘framed genus g curve’ to be a tuple (Σ, u,L, F ), where Σ is a nodal genus g curve,
u : Σ → X is a stable map as above, L → Σ is a multi-degree 0 holomorphic line bundle with
H1(Σ,L⊗p

u ⊗ L) = 0 and F = (f0, . . . , fN ) is a complex basis of H0(Σ,L⊗p
u ⊗ L).

• Choose a complex linear connection ∇X on the vector bundle TX equipped with J .

• Choose a G-equivariant map3 λ from the space of framed genus g curves to G/G.

• Choose a sufficiently large integer k ≫ 1, which will be used to achieve transversality.

3We are suppressing some ugly technicalities here; see [HS24, §3.3] for more details.
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Fact. The open sub-stack M∗
g,0(PN ,m) ⊂ Mg,0(PN ,m), consisting of non-degenerate embeddings

Σ ↪→ PN which also satisfy H1(Σ,OPN (1)|Σ) = 0, is in fact a smooth variety of the expected
dimension. It carries a universal family

C PN

M∗
g,0(PN ,m)

ev

π (2.3.1)

whose total space C is also a smooth variety.

Any framed genus g curve (Σ, u,L, F ) gives a degree m embedding

ιF = [f0 : · · · : fN ] : Σ ↪→ PN ,

with ι∗F (OPN (1)) ≃ L⊗p
u ⊗ L. We have [ιF : Σ ↪→ PN ] ∈ M∗

g,0(PN ,m).

Definition 2.4. We define (T , E , G, s, ψ) as follows.
(A) The thickening T is the moduli space of tuples (Σ, u,L, F, η, α) where

(i) (Σ, u,L, F ) is a framed genus g curve,

(ii) η ∈ Ek(Σ, u,L, F ) := H0(Σ, u∗TX ⊗ ι∗F (T
∗0,1PN ⊗OPN (k)))⊗H0(PN ,OPN (k)),

(iii) α ∈ H1(Σ,OΣ),

and these satisfy the thickened ∂̄-equation (1.3.1) and the condition [L] = exp(α) ∈ Pic0(Σ).

Here, the holomorphic structure on ι∗F (T
∗0,1PN ) (resp. u∗TX) comes from the isomorphism

T ∗0,1PN ≃ TPN induced by the Fubini–Study metric (resp. the connection ∇X).

The map ι̃F is the pullback of ιF : Σ ↪→ PN to the normalization Σ̃ → Σ and the linear map
⟨·⟩ is induced by the Hermitian inner product on OPN (k).

We have a natural projection T → M∗
g,0(PN ,m), given by (Σ, u,L, F, α) 7→ [ιF : Σ ↪→ PN ].

(B) The obstruction bundle E → T has fibre over (Σ, u,L, F, η, α) given by

su(N + 1)⊕ Ek(Σ, u,L, F )⊕H1(C,OC).

(C) The obstruction section s of E → T is given by4

(Σ, u,L, F, η, α) 7→ (i log λ(Σ, u,L, F ), η, α).

(D) The symmetry group G = PU(N + 1).

(E) The footprint map

ψ : s−1(0)/G→ Mg,0(X,A; J)

given by forgetting L, F .
This is the global Kuranishi chart for Mg,0(X,A; J) associated to (LΩ, p,∇X , λ, k). Uniqueness up
to equivalence and cobordism are proved as in the genus 0 case.

4To define i log, identify G/G with the space of (N+1)×(N+1) positive definite Hermitian matrices with det = 1.
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