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Abstract

We construct a large new family of rational algebraic curves in the complex
projective plane with a (p, q) cusp singularity. More precisely, we classify all such
pairs (p, q) for curves which are rigid (in a suitable sense), finding a phase transition
from discrete to continuous as the ratio p/q crosses the fourth power of the golden
ratio. In particular, for many values of (p, q), our curves solve the minimal degree
problem for plane curves with a (p, q) cusp singularity. Our technique relies on (i)
explicit bijections between curves in log Calabi-Yau surfaces and curves in nontoric
blowups of toric surfaces, (ii) the tropical vertex group and its connections with
relative Gromov–Witten invariants, and (iii) recent positivity results for scattering
diagrams. As our main application, we completely solve the stabilized symplectic
embedding problem for four-dimensional ellipsoids into the four-dimensional round
ball. The answer is neatly encoded in a single piecewise smooth function which
transitions from an infinite Fibonacci staircase to an explicit rational function. Many
of our results also extend to other target spaces, e.g. del Pezzo surfaces and more
general rational surfaces.
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1 Introduction

Since Gromov’s discovery of his famous nonsqueezing theorem in [Gro85], a primary goal
of quantitative symplectic geometry has been to put explicit nontrivial restrictions on
Hamiltonian diffeomorphisms. In particular, we have the following central problem:

Problem 1.0.1 (ellipsoid embedding problem). For which a⃗, a⃗ ′ ∈ ℝn
>0 does there exist a

symplectic embedding E(⃗a)
s
↪→ E(⃗a ′)?

Here E(⃗a) :=

{
π

n∑
i=1

(x2
i+yi)

2

ai
≤ 1

}
denotes the symplectic ellipsoid in ℝ2n with area

factors a⃗ = (a1, . . . , an) ∈ ℝn
>0, endowed with the restriction of the standard symplectic

form ωstd =
n∑

i=1
dxi ∧ dyi. By symplectic embedding we mean a smooth embedding

which pulls back the symplectic form on the target to that of the source (this is equivalent
to the existence of a Hamiltonian diffeomorphism Φ : ℝ2n → ℝ2n satisfying Φ(E(⃗a)) ⊂
E(⃗a ′) – see [Sch18, §4.4]).

In dimension 2n = 4, a complete solution to Problem 1.0.1 with target space the round
ball E(⃗a ′) = E(1, 1) =: B4 was worked out explicitly by McDuff–Schlenk in [McSch12],
building on various works [McD09; MP94; McD98; Bir97; LL01; LL02] with input from
Seiberg–Witten theory. In higher dimensions, the ellipsoid embedding problem is still
largely open, but there is an intriguing “stabilized” regime with a3, . . . , an ≫ a1, a2 and
a′3, . . . , a

′
n ≫ a′1, a

′
2 which appears to serve as a bridge between four dimensions and

higher dimensions:

Problem 1.0.2 (stabilized ellipsoid embedding problem). For which a1, a2, a′1, a
′
2 ∈ ℝ>0

and N ∈ ℤ≥1 does there exist a symplectic embedding E(a1, a2)×ℝ2N s
↪→ E(a′1, a

′
2)×ℝ2N?

In this paper, we give a complete solution to the stabilized ellipsoid embedding
problem in the case that the target is the stabilized round ball (i.e. a′1 = a′2), along
with various other target spaces. In other words, we compute the stabilized ellipsoid
embedding function cB4×ℝ2N , where for any a ∈ ℝ≥1, N ∈ ℤ≥1, and symplectic
four-manifold X4 we put

cX4×ℝ2N (a) := inf
{
µ | E( 1µ ,

a
µ)×ℝ2N s

↪→ X4 ×ℝ2N
}
. (1.0.1)
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Figure 1.0.1: The stabilized ellipsoid embedding function cB4×ℝ2N (a) computed in
Theorem A for N ∈ ℤ≥1. Note that for a below the accumulation point τ4 this agrees
with its unstabilized counterpart cB4(a), while for a > τ4 the function 3a

a+1 is a new
purely high dimensional phenomenon.

Let Fib1 = 1,Fib2 = 1,Fibk+2 = Fibk + Fibk+1 denote the Fibonacci numbers, and put

αk :=
Fib22k+1

Fib22k−1
and βk :=

Fib2k+3

Fib2k−1
for k ∈ ℤ≥1, so that we have

α0 := 1 < β0 := 2 < α1 = 4 < β1 = 5 < α2 =
25
4 < β2 =

13
2 < α3 =

169
25 < · · ·

and lim
k→∞

αk = lim
k→∞

βk = τ4 := 7+3
√
5

2 ≈ 6.85 (here τ is the golden ratio).

Theorem A. For any N ∈ ℤ≥1, the stabilized ellipsoid embedding function of the round
four-ball B4 is given by:

cB4×ℝ2N (a) =


1√
αk

· a if a ∈ [αk, βk] for some k ∈ ℤ≥0
√
αk+1 if a ∈ [βk, αk+1] for some k ∈ ℤ≥0

3a
a+1 if a ∈ [τ4,∞).

See Figure 1.0.1 for an illustration.
Various special cases of Theorem A have been established previously, e.g. in [HK14;

CH18; CHM18; McD18; Sie22]. In particular, the embedding concocted by Hind in
[Hin15] based on symplectic folding [LM95; Sch03; Gut08] gives the upper bound
cB4×ℝ2N (a) ≤ 3a

a+1 for all a ∈ ℝ≥1. Obstructions giving matching lower bounds at the
outer corner values a = β0, β1, β2, . . . were proved using embedded contact homology
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in [CH18], and in fact these suffice to establish cB4×ℝ2N (a) = cB4(a) for all a ∈ [1, τ4]
by elementary scaling and monotonicity considerations. Thus the main new content of
Theorem A is the lower bound cB4×ℝ2N (a) ≥ 3a

a+1 for a ∈ (τ4,∞), though our proof also
provides the lower bounds at the points βk ∈ [1, τ4].

From the aforementioned works emerges a procedure for obstructing stabilized ellipsoid
embeddings via moduli spaces of punctured pseudoholomorphic curves (à la symplectic
field theory) with genus zero and one negative end, with prescribed asymptotic Reeb
orbits. The main difficulty is to prove that the relevant moduli spaces are nonempty.
For certain values of a > τ4, the necessary curves have been constructed via Hutchings–
Taubes obstruction bundle gluing [McD18] or neck-stretching closed rational curves with
point constraints [CHM18], but attempts to push these methods further seem to yield
diminishing returns.

Meanwhile, the papers [Sie22; MS23] use algebraic structures arising in SFT to give
recursive formulas (and even a closed tree formula in [Sie23]) which in principle can
enumerate all of the relevant moduli spaces, where in particular a nonzero count implies
nonemptiness. With the aid of computer calculations these have been used to verify
Theorem A in many additional cases, but proving general nonvanishing results by direct
combinatorial analysis of these algorithms appears to be out of reach.1

Still more recently, in [McS23] we reformulated the above SFT moduli spaces in
terms of closed rational pseudoholomorphic curves in ℂℙ2 with a distinguished (p, q)
cusp singularity, i.e. the singularity modeled on {xp + yq = 0} ⊂ ℂ2. Since these curves
could be a fortiori algebraic, this opens up the possibility of importing techniques from
algebraic geometry in order to produce singular algebraic curves whose existence implies
the relevant obstructions.2 Indeed, in [MS24] we observed that the obstructions at the
outer corners a = β0, β1, β2, . . . in Theorem A are carried by certain unicuspidal rational
plane curves whose existence had been long known in certain circles (see [Ore02; Kas87;
Fer+06]).

Under this reformulation, the curves relevant for a ∈ (τ4,∞) must have some addi-
tional singularities away from the distinguished cusp; such curves were called sesquicus-
pidal in [McS23] because they generalize unicuspidal curves (i.e. those having one cusp
and no other singularities). We will deduce Theorem A from the following existence result
for singular rational plane curves, whose formulation involves only classical algebraic
geometry.

Theorem B. Fix coprime integers p > q > 1 with p + q divisible by 3, and put
1While some of these results rely on certain functoriality properties of symplectic field theory, the

present article is entirely independent of these papers and does not depend on any nontrivial input from
symplectic field theory. On the other hand, the results of this paper could be used to compute the higher
symplectic capacities {gb} as in [Sie22] for the four-dimensional round ball and various other convex
toric domains.

2We will say that an algebraic curve C in an algebraic surface X has a (p, q) cusp at a point p ∈ C
if there are an open neighborhoods p ∈ U ⊂ ℂℙ2 and (0, 0) ∈ V ⊂ ℂ2 and a homeomorphism of pairs
(U,C ∩ U) ∼= (V, V ∩ {xp + yq = 0}). Note that in this paper we are only considering singularities up
to topological (as opposed to analytical) equivalence (see e.g. the notations and conventions section in
[GLS18]).
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d := 1
3(p+ q). There exists a rational algebraic curve in ℂℙ2 with a (p, q) cusp and degree

d if and only if one of the following holds:

(a) (p, q) = (Fibk+4,Fibk) for some k ∈ ℤ≥3 odd

(b) p/q > τ4 := 7+3
√
5

2 .

Moreover, these curves can be taken to be (p, q)-well-placed with respect to any given
irreducible nodal cubic N ⊂ ℂℙ2.

To explain the last sentence, note that such an N ⊂ ℂℙ2 is uninodal (i.e. has one
node and is otherwise nonsingular), say with local branches B−,B+ near its double point
p ∈ N . Following [MS24, Def. 2.2.4], we say that a curve C is (p, q)-well-placed with
respect N if C ∩N = {p}, C is locally irreducible near p, and we have local intersection
numbers (C · B−)p = p and (C · B+)p = q. Since any two uninodal cubics in ℂℙ2 are
projectively equivalent, for concreteness we often take N = N0 := {x3 + y3 = xyz}.
The well-placed condition will be crucial for establishing a connection with scattering
diagrams in §5, and also for applying the symmetries from [MS24, §2] in §3.
Remark 1.0.3. The condition d = 1

3(p+ q) for a curve C is equivalent to the index
indp,qℂ (C) := c1(C) − p − q being zero, i.e. C becomes rigid (at least virtually) after
imposing a maximal order jet constraint at the cusp (see [McS23, §3] for details). ♢

We will see that in case (a) of Theorem B we have p/q < τ4 and δd,p,q = 0, where
δd,p,q :=

1
2(d− 1)(d− 2)− 1

2(p− 1)(q− 1) is the algebraic count of singularities away from
the distinguished cusp, while in case (b) we have δd,p,q ≥ 1. The curves in Theorem B
are naturally organized by their value of δd,p,q ∈ ℤ≥0, which is preserved by certain
symmetries Φℂℙ2 ,Ψℂℙ2 discussed in §3. In particular, putting δ(C) := δd,p,q for a degree
d rational algebraic plane curve C with a (p, q) cusp, there are infinitely many other such
curves (of arbitrarily high degree) with the same value of δ(C).
Remark 1.0.4. As we explain in §3, it follows that the adjunction formula is the only
obstruction to the existence of the curves in Theorem B. In other words, for any (p, q)
and d = 1

3(p+ q) not covered by (a) or (b), we have δd,p,q < 0. ♢

An interesting feature of the curves in Theorem B is that they have very low degree
relative to the cusp. Indeed, recall the following classical problem in algebraic curve
theory (see e.g. [GS21, Intro.] or [GLS18, §4.2.1(A)]):

Problem 1.0.5. Determine the minimal degree dmin(p, q) of any algebraic curve in ℂℙ2

which has a (p, q) singularity (and possibly other singularities).

A state-of-the-art result can be found in [GS21, Thm. 3.10], which implies dmin(p, q) ≤
3
√

(p− 1)(q − 1)− 1 for all coprime p, q ∈ ℤ≥1. We refer the reader to [GLS18, §4.5.5]
or [GS21, §3.3] for historical context and more general results. By combining Theorem B
with adjunction considerations, we resolve Problem 1.0.5 for “most” values of (p, q) with
p+ q divisible by 3. As a shorthand, when p+ q is divisible by 3 we will put δp,q := δd,p,q
with d := 1

3(p+ q).
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Corollary C. Let C be one of the rational algebraic plane curves provided by Theorem B,
say with a (p, q) cusp and degree d = 1

3(p+ q). Then we have

dmin(p, q) =
1
3(p+ q) (1.0.2)

unless d ≤ 2 + δp,q. In particular, (1.0.2) holds if δp,q ≤ 4, and in general it holds for all
but finitely many coprime p, q ∈ ℤ≥1 with p+ q divisible by 3 and fixed value of δp,q.

Proof. In order to prove minimality of d, it suffices to show that any algebraic curve of
degree d− 1 with a (p, q) cusp is ruled out by the adjunction formula, i.e. that we have

δ−d,p,q :=
1
2(d− 2)(d− 3)− 1

2(p− 1)(q − 1) < 0.

In other words, if d is not minimal then we have δ−d,p,q ≥ 0, and hence d−2 = δd,p,q−δ−d,p,q ≤
δd,p,q, i.e. d ≤ 2 + δd,p,q. We then have

δd,p,q ≤ 1
2(d− 1)(d− 2)− 1

2(3d− 3) = 1
2(d− 1)(d− 5) ≤ 1

2(δd,p,q + 1)(δd,p,q − 3),

which implies δd,p,q ≥ 5. Finally, the last claim in the corollary follows since we have an
a priori upper bound on p+ q when (1.0.2) fails.

Remark 1.0.6. Theorem B also implies a new (a priori weaker) result on the existence
of (p, q)-sesquicuspidal rational symplectic curves in ℂℙ2, i.e. working in the symplectic
rather than algebraic category, and this already suffices to prove Theorem A – see §2
below for more details. In particular, in the language of [EG22], we get new genus zero
projective symplectic hats (often of minimal degree) of the transverse torus knot 𝕋 (p, q)
with maximal self-linking number, and by loc. cit. these are equivalent to positively
immersed symplectic cobordisms from 𝕋 (p, q) to the standard transverse torus link
𝕋 (d, d) with d = 1

3(p, q). It is interesting to ask to what extent these cobordisms could
be constructed using more flexible topological techniques, for example by manipulating
braid diagrams (c.f. [CW21, §6.1] or [FP21]). ♢

Let us also mention that the computation in Theorem A is robust under cer-
tain perturbations of the round ball. Consider the trapezoid in ℝ2

≥0 with vertices
(0, 0), (0, 2), (2, 1), (2, 0), and let X ⊂ ℂ2 denote its preimage under the moment map
ℂ2 → ℝ2

≥0, (z1, z2) 7→ (π|z1|2, π|z2|2) for the standard Hamiltonian torus action on ℂ2.

Corollary D. Let U ⊂ ℂ2 be any open subset such that X ⊂ U ⊂ B4(3) := E(3, 3).
Then we have cU×ℝ2N (a) = a

a+1 for any a ≥ τ4 and N ≥ 1.

Proof. Theorem A together with monotonicity under symplectic embeddings and scaling
considerations gives cU×ℝ2N (a) ≤ cB4(3)×ℝ2N (a) = a

a+1 for all a ≥ τ4 and N ≥ 1. On
the other hand, by [CHS22, Prop. 3.1] we have the folding-type symplectic embedding
E( 1µ ,

a
µ)×ℝ2N s

↪→ X ×ℝ2N for all µ > a
a+1 , which gives cU×ℝ2N (a) ≥ cX ×ℝ2N (a) ≥ a

a+1
for all a ≥ 1 and N ≥ 1.
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A simple byproduct of our proof of Theorem A is that we have cB4×ℝ2N (a) =
cℂℙ2×ℝ2N (a) for all a ∈ ℝ≥1 and N ∈ ℤ≥1,3 and it is natural to try to replace ℂℙ2 with
other del Pezzo surfaces. Recall that by definition these are smooth Fano complex pro-
jective surfaces, which up to diffeomorphism are ℂℙ1 ×ℂℙ1 and Bljℂℙ2 := ℂℙ2#×jℂℙ2

for j = 0, . . . , 8. Up to symplectomorphism each of these admits a unique symplectic
form which is unimonotone (i.e. the first Chern class and symplectic area class coincide
– see e.g. [Sal13]), and the complex structure is rigid when the degree is at least 5 (i.e.
ℂℙ1 × ℂℙ1 and Bljℂℙ2 for j = 0, . . . , 4). For example, the Fubini–Study symplectic
form on the complex projective plane becomes unimonotone after rescaling so that a line
has symplectic area 3 (this is sometimes denoted by ℂℙ2(3)).

It was recently observed in [Cri+20; CV22] that, for each unimonotone rigid4 del
Pezzo surface X, the corresponding four-dimensional ellipsoid embedding function cX(a)
for 1 ≤ a ≤ aXacc is an infinite staircase analogous to the one in Figure 1.0.1, with
numerics given by solutions to a recursive equation gk+2J = Kgk+J − gk. Here K + 2
is the degree of the del Pezzo surface X, J is called the number of strands of the
staircase, and aXacc ∈ ℝ>1 is the accumulation point (see e.g. [McS23, §2.4] for a
more detailed overview). For example, for X = ℂℙ2 we have K = 7, J = 2, and
aℂℙ

2

acc = τ4. Note that J is not directly visible from Figure 1.0.1, but it is the number of
initial “seeds” needed to generate all of the steps via the above recursion, with J = 2 for
ℂℙ1,ℂℙ1 × ℂℙ1,Bl3ℂℙ2,Bl4ℂℙ2 and J = 3 for Bl3ℂℙ2,Bl4ℂℙ2. According to [MS24,
Cor. C], these infinite staircases are stable, i.e. for each unimonotone rigid del Pezzo
surface we have cX(a) = cX×ℝ2N (a) for all a ∈ [1, aXacc] and any N ∈ ℤ≥1.

Theorem E. Fix N ∈ ℤ≥1.

(a) If X is one of the unimonotone rigid del Pezzo surfaces Bljℂℙ2 for j ∈ {0, 1, 2, 3}
or ℂℙ1 × ℂℙ1, we have

cX×ℝ2N (a) =

{
cX(a) if a ∈ [1, aXacc]
a

a+1 if a ∈ [aXacc,∞).
(1.0.3)

(b) For the unimonotone del Pezzo surfaces Bljℂℙ2 for j ∈ {5, 6, 7, 8}, we have

cX×ℝ2N (a) ≥ a
a+1 for all a ∈ [1,∞). (1.0.4)

Remark 1.0.7. For the missing unimonotone del Pezzo surface X = Bl4ℂℙ2, cX×ℝ2N (a)
is still bounded from below by the right hand side of (1.0.3) for all a ∈ [1,∞), and
equal to it for a ∈ [1, aXacc]. Proving the matching upper bound cX×ℝ2N (a) ≤ a

a+1 for
X = Bljℂℙ2 with j ≥ 4 appears to require a refinement of the explicit symplectic
embedding in [CHS22, Prop. 3.1] (see also Remark 2.0.4 for a heuristic justification of
these embeddings). ♢

3Here ℂℙ2 := ℂℙ2(1) is equipped with the Fubini–Study form normalized so that a line has area 1. It
should generally be clear from the context whether we are viewing a given space as a complex algebraic
surface or a symplectic four-manifold.

4By slight abuse, rigidity here refers to the complex structure, even though at the moment we are
viewing X as a symplectic manifold.
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As Theorem E extends Theorem A to del Pezzo surfaces, it is based on the following
result on singular rational algebraic curves in del Pezzo surfaces, which extends Theorem B.
We showed in [MS24, Thm. B] that for each outer corner of the infinite staircase cX |[1,aXacc],
say with x-value p/q, there exists a (p, q)-unicuspidal rational algebraic curve C in X
with p+ q = c1([C]). For brevity we will sometimes refer to these as the outer corner
curves of X.

Theorem F. Let X be a del Pezzo surface, and let SX denote the set of reduced
fractions p/q ≥ 1 such that there exists a rational algebraic curve C in X with a (p, q)
cusp satisfying p+ q = c1([C]).

(a) If X is rigid (i.e. has degree ≥ 5), then SX is dense in [aXacc,∞). Meanwhile,
SX ∩ [1, aXacc) is a discrete set accumulating at aXacc, consisting precisely of the
x-values of outer corners of the infinite staircase cX |[1,aXacc].

(b) If X is nonrigid (i.e. has degree ≤ 4), then SX is dense in [1,∞).

Moreover, the relevant curves can be taken to be well-placed with respect to any given
uninodal anticanonical divisor.

Remark 1.0.8.

(1) It also follows from our proof of Theorem F that SX is dense in [1,∞) if X is any
blowup of ℂℙ2 at j ≥ 9 points in suitably general position, or if all of the points
lie in the smooth locus of a given uninodal cubic (see Remark 3.0.2). We expect
that such curves in non-Fano rational surfaces will play an important role in the
general case of Problem 1.0.2.

(2) Our proof actually gives a precise description of SX in many cases (c.f. Re-
mark 6.3.4). For instance, in the case X = ℂℙ1 × ℂℙ1, a reduced fraction
p/q > aXacc lies in SX if and only if p+ q is divisible by 2, while for X = Bljℂℙ2

with j ∈ {3, 4} we have simply SX ∩ [aXacc,∞) = ℚ ∩ [aXacc,∞).

♢

A key new idea underlying Theorems B and F is an explicit connection between
well-placed curves and scattering diagrams. As we recall in §5.1, a scattering diagram
D is an algebro-combinatorial object which consists roughly of a collection of oriented rays
in ℝ2, each labeled by a power series in ℂ[x, x−1, y, y−1]JtK. Scattering diagrams were
defined implicitly by Kontsevich–Soibelman [KS06] as bookkeeping tool for Maslov index
zero holomorphic disks in singular Lagrangian toric fibrations, and were subsequently
studied extensively (also in higher dimensions) as part of the Gross–Siebert approach to
mirror symmetry (see e.g. [GS11; GHK15; GHS22; GS22]). They also arise naturally in
various other contexts, for instance cluster algebras [Gro+18; GP10; Che+17; Rea20],
and quiver representations [Rei10; Rei11; Bri17; RW13]. A scattering diagram D carries a
natural notion of monodromy around closed loops in ℝ2, and the Kontsevich–Soibelman
algorithm produces a new scattering diagram S(D)min by adding new labeled rays

8



(typically infinitely many) in order to kill the monodromy. This process introduces rich
combinatorics which are not fully understood even when the initial scattering diagram D
is very simple.

A natural setting for our correspondence result is that of uninodal Looijenga pairs
(X,N ), i.e. X is a complex projective surface and N ⊂ X is a rational anticanonical
divisor with one double point. Following [GHK15], any such pair admits at least one
toric model, which in particular identifies the “interior” X ∖ N with the interior of
a nontoric blowup of a toric surface (see §4.1 for details). By way of notation, put
zm := xayb ∈ ℂ[x, x−1, y, y−1] for each m = (a, b) ∈ ℤ2.

Theorem G (Theorem 5.2.3 and §4.3). For each uninodal Looijenga pair (X,N ) with
strongly convex5 toric model T , there is a scattering diagram DT and a piecewise linear
map W : ℤ2

≥1 → ℤ2 such that, for each coprime p, q ∈ ℤ≥1, the following are equivalent:

(a) there exists a rational algebraic curve in X which is (p, q)-well-placed with respect
to N

(b) the coefficient of zW(p,q) in 𝕗W(p,q) is nonzero as an element of ℂJtK, where 𝕗W(p,q) ∈
ℂ[x, x−1, y, y−1]JtK is the label attached to the ray ℝ≥0 ·W(p, q) in S(DT )min.

Moreover, in the case that X is a rigid del Pezzo surface, there is a strongly convex
toric model TX such that DTX has rays ℝ≤0 ·mi labeled by functions 𝕗i = (1 + tzmi)ℓi for
i = 1, . . . , J as in Table 4.3.1.

As we point out in Remark 4.3.2, toric models for uninodal Looijenga pairs are
closely related to four-dimensional symplectic almost toric fibrations (as in e.g. [Sym]).
In particular, for those unimonotone rigid del Pezzo surfaces X admitting triangular
almost toric fibrations (namely Bljℂℙ2 for j = 0, 3, 4 and ℂℙ1 × ℂℙ1, corresponding
to J = 2 strands), the initial scattering diagram DTX has just two rays, and hence can
be converted (by a change of lattice trick as in [Gro+18, §C.3]) to one of the basic
scattering diagrams Dℓ1,ℓ2

e1,e2 studied in [GP10] (see §6). For instance, in the case X = ℂℙ2,
Theorem G reduces the existence of well-placed rational plane curves to understanding the
scattering diagram S(D3,3

e1,e2)min. These basic scattering diagrams were first studied using
computer experiments by Kontsevich, and were discussed empirically in e.g. [GPS10,
Ex. 1.6] and [Gro+18, Ex. 1.15]. In the case ℓ1 = ℓ2, Gross–Pandharipande [GP10]
exploited a surprising connection with quiver representation theory due to Reineke
[Rei10] in order to completely describe all rays appearing in S(Dℓ1,ℓ1

e1,e2)min. Together
with Theorem G, this suffices to prove Theorem B, and, combined with additional
symmetry considerations and a blowup trick in §3, also Theorem F except for the case
X = ℂℙ1 × ℂℙ1. More recently, Gross–Hacking–Keel–Kontsevich [Gro+18] proved a
powerful positive factorization result for scattering diagrams, and Gräfnitz–Luo [GL23]
combined this with the deformation techniques from [GPS10] and the symmetries T1, T2
from [GP10] in order to combinatorially study the scattering diagrams S(Dℓ1,ℓ1

e1,e2)min for all
5Here strong convexity is a technical condition for toric models which holds in all of our main examples

– see §5.2.

9



ℓ1, ℓ2 ∈ ℤ≥1. In particular, the resulting scattering positivity results are strong enough
to handle the remaining case of ℂℙ1 × ℂℙ1, which corresponds to (ℓ1, ℓ2) = (2, 4).
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related to scattering diagrams. We also thank János Kollár for various interesting
comments and questions.

2 Obstructing symplectic embeddings via algebraic curves

In this section we briefly explain how to deduce Theorem E (and hence also Theorem A
as a special case) from Theorem F. Theorem 2.0.1 below also implies various refinements
of Theorem E, wherein the domain is replaced with a compact symplectic manifold; we
leave the explicit formulations to the interested reader.

An algebraic curve C in a smooth complex projective surface is weakly (p, q)-
sesquicuspidal (for some coprime p, q ∈ ℤ≥1) if it has a (p, q) cusp singularity, and
(p, q)-sesquicuspidal if all of its auxiliary singularities are ordinary double points. We
define the (complex) index of such a curve to be indp,qℂ (C) := c1([C])−p− q. Symplectic
(p, q)-sesquicuspidal curves are defined similarly but require C to be only a symplectic
submanifold away from the singular points (note that the auxiliary double points are
required to be positively oriented). In the symplectic category we can always perturb
the auxiliary singularities into finitely many ordinary double points, although this is not
guaranteed in the algebraic category.

The following is our main tool for deducing symplectic embedding obstructions from
singular curves.

Theorem 2.0.1 (Cor. 2.7.2, Cor. 2.3.8, Thm. D, and Thm. E in [McS23]). Let
X be a closed symplectic four-manifold, and suppose that X contains an index zero
(p, q)-sesquicuspidal rational symplectic curve C in homology class A ∈ H2(X) for some
coprime p, q ∈ ℤ≥1. Then any symplectic embedding E( 1µ · (p, q, b1, . . . , bN ))

s
↪→ X ×Q2N

with Q2N a closed symplectic manifold of dimension 2N ≥ 0 and b1, . . . , bN > pq must
satisfy µ ≥ pq

area(A) , provided that X ×Q is semipositive.6

We will mostly take Theorem 2.0.1 as a black box, but the rough idea is as follows.
Firstly, we can find a compatible almost complex structure J on X which preserves
C, and we consider the moduli space of J-holomorphic curves of the same type as C,
after imposing an additional jet constraint to cut down the expected dimension to zero.
By a version of automatic transversality in dimension four, every such curve counts

6Semipositivity is a technical condition which is automatic if X ×Q has real dimension at most 6,
or if X ×Q is monotone (i.e. the first Chern class and symplectic area class are positively proportional).
This assumption could probably be removed by more abstract perturbation techniques.
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positively, and the same is true if we view these curves as lying in a slice X × {pt}
of X × Q, where the latter is equipped with a split almost complex structure. By a
compactness argument, the corresponding moduli space of curves in X × Q persists
under general deformations of the almost complex structure. Moreover, we can trade
the cusp singularity for an asymptotic negative end in (the symplectic completion of)
X ×Q minus a suitable ellipsoid. Finally, given a hypothetical symplectic embedding
E( 1µ · (q, p, b1, . . . , bN ))

s
↪→ X ×Q2N , the desired inequality follows by Stokes’ theorem,

noting that the symplectic area of every curve in this (necessarily nonempty) moduli
space must be positive.

Given a symplectic embedding E(a1, a2) × ℝ2N s
↪→ X × ℝ2N , note that for any

b1, . . . , bN the image of E(a1, a2, b1, . . . , bN ) lands in X ×B2N (b) for some finite b, and
hence there is also a symplectic embedding E(a1, a2, b1, . . . , bN )

s
↪→ X ×Q2N for some

closed symplectic manifold Q of dimension 2N . Thus Theorem 2.0.1 implies:

Corollary 2.0.2. Let X be a closed symplectic four-manifold which contains an index
zero (p, q)-sesquicuspidal rational symplectic curve in homology class A ∈ H2(X) for some
coprime p, q ∈ ℤ≥1. Then for all N ∈ ℤ≥0 we have cX×ℝ2N (p/q) ≥ p

area(A) , provided that
either X is monotone or N ≤ 1.

Using Corollary 2.0.2, we now deduce Theorem E from Theorem F.

Proof of Theorem E. Given a smooth complex projective surface X and a rational alge-
braic curve C in X with a (p, q) cusp satisfying p+ q = c1([C]), a small perturbation
of C gives an index zero (p, q)-sesquicuspidal rational symplectic curve in X. If X is
unimonotone, then Corollary 2.0.2 gives the embedding obstruction

cX×ℝ2N (p/q) ≥ p
area([C]) =

p
c1([C]) =

p
p+q = (p/q)

(p/q)+1 . (2.0.1)

In (a), the upper bound cX×ℝ2N (a) ≤ cX(a) for all a ≥ 1 is manifest by stabilizing
four-dimensional symplectic embeddings. In the other direction, by combining the outer
corner curves in Theorem F(a) with (2.0.1), we get the lower bound cX×ℝ2N (a) ≥ cX(a)
whenever a is the x-value of an outer corner of the infinite staircase in cX |[1,aXacc], and
hence for all 1 ≤ a ≤ aXacc by scaling and monotonicity considerations (see [MS24, Cor.
C] for more details). Similarly, the curves with p/q > aXacc in Theorem F(a) give the
lower bound cX×ℝ2N (a) ≥ a

a+1 for all a in a dense subset of [aXacc,∞), and hence for all
a in [aXacc,∞) by continuity of cX×ℝ2N . Meanwhile, the upper bound cX×ℝ2N (a) ≤ cX(a)
for all a > aXacc follows from the explicit symplectic embedding constructed in [CHS22,
Prop. 3.1] (see [MS24, Prop. 7.2.1]). As for (b), the lower bound cX×ℝ2N (a) ≥ a

a+1 for
all a ≥ 1 follows similarly by combining Theorem F(b) with (2.0.1).

Remark 2.0.3. For coprime p, q ∈ ℤ≥1 with p + q divisible by 3, the above proof
actually gives cℂℙ2×ℝ2N (1, p/q, b1, . . . , bN ) = cℂℙ2×ℝ2N (p/q) whenever b1, . . . , bN > p,

where we put cX4×ℝ2N (⃗a) := inf
{
µ | E( 1µ · a⃗) s

↪→ X4 ×ℝ2N
}

for a⃗ ∈ ℝ2+N
>0 . As a step

towards computing cℂℙ2×ℝ2N (⃗a), it is natural to ask what is the supremal b for which
cℂℙ2×ℝ2N (1, p/q, b, . . . , b) ̸= cℂℙ2×ℝ2N (p/q). ♢
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We end this section with a heuristic which suggests that the lower bounds in Theo-
rem E(b) (and also Remark 1.0.7) should be optimal.
Remark 2.0.4. For a unimonotone closed symplectic four-manifold X, we observed
above that any index zero (p, q)-sesquicuspidal symplectic rational curve in X gives the
lower bound

cX×ℝ2N (a) ≥ a
a+1 (2.0.2)

for a = p/q. By trading the cusp for a negative puncture as in [McS23, Thm. D], this
lower bound can be understood in terms of index zero rational pseudoholomorphic planes
in the completed symplectic cobordism Ŵ , where W denotes X × Q minus a small
ellipsoid with area factors proportional to (p, q, b1, . . . , bN ), with b1, . . . , bN ≫ p, q and
Q2N a sufficiently large closed symplectic manifold. Here the fact that we are considering
curves with genus zero and exactly one negative end translates crucially into the fact
that the index does not change as we stabilize from X to X ×Q (see e.g. [McS23, §2.6]).

In general, one could imagine using various other moduli spaces of asymptotically
cylindrical punctured curves in Ŵ (à la symplectic field theory) in order to read off lower
bounds for cX×ℝ2N which might improve upon (2.0.2). These moduli spaces should have
nonnegative index in order to have a reasonable chance at persisting under deformations,
but in principle they could include curves of higher genus, with multiple negative ends,
and possibly carrying additional constraints. However, by purely formal considerations
based on index and action, one can show that these lower bounds (which are given
ultimately by applying Stokes’ theorem as above) cannot improve upon (2.0.2); see e.g.
[SY23, §7] for an analogous formal argument in the setting of higher dimensional ball
packings. Thus, Eliashberg’s “holomorphic curves or nothing” metaprinciple suggests
that the lower bound cX×ℝ2N (a) ≥ a

a+1 should be optimal whenever it holds. ♢

3 Symmetries of del Pezzo surfaces

Our main goal in this section is to deduce Theorem F (except for the case X = ℂℙ1×ℂℙ1)
from Theorem B. The basic idea is to blow up (weakly) sesquicuspidal curves in the
projective plane in order to embed them into lower degree del Pezzo surfaces, and then
to apply the birational symmetries ΦX ,ΨX from [MS24, §2.3] in order to further enlarge
these curve families. The case of ℂℙ1 × ℂℙ1 is exceptional and is postponed until §6.
Incidentally, the scattering diagram argument given in §6.3 will independently prove a
more explicit version of the density statement in Theorem F(a) in the four cases with
J = 2 strands (including ℂℙ1 × ℂℙ1), whereas the argument in this section applies
uniformly for blowups of complex projective space irrespective of J .

Let N be a uninodal anticanonical divisor in a del Pezzo surface X, and let B−,B+

denote the two local branches of N near its double point p. Let K + 2 denote the degree
of X, which is by definition N · N ∈ {1, . . . , 9}. We will say that a curve C in X is
(p, q)-well-placed with respect to (N ;B−,B+) if C intersects N only at p, C is
locally irreducible near p, and we have local intersection multiplicities (C · B−)p = p and
(C · B+)p = q. Note that this implies p + q = c1([C]), i.e. indp,qℂ (C) = 0, and, for p, q
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coprime, C has a (p, q) cusp. We will often suppress B−,B+ (and sometimes also N )
from the notation if the local branches (and the divisor itself) are implicit or immaterial.
Convention 3.0.1. It will also be convenient to slightly extend the above definition
by saying that C is (k, 0)-well-placed if C ∩ N is a single smooth point of N and
C · N = k, with (0, k)-well-placed curves defined in the exact same way. ♢

For K + 2 ≥ 5, [MS24, §2] defines a birational transformation ΦX : X 99K X
which proceeds by blowing up X at K points infinitely near to the node of N , each
corresponding to the branch B+, and then blowing down K times starting with the strict
transform of N , and finally identifying the result isomorphically with X. Swapping
the roles of B+ and B− gives another birational transformation ΨX : X 99K X. Kollár
[Kol24] extends these birational transformations to the case K+2 = 4, and also upgrades
them to isomorphisms of X ∖N .7 These papers show that if C is (p, q)-well-placed with
respect to (N ;B−,B+), then ΦX(C) is (p′, q′)-well-placed with respect to (N ;B−,B+),
where

• (p′, q′) = (p,Kp− q) if p/q > 1/K

• (p′, q′) = (q −Kp, p+K(q −Kp)) if p/q ≤ 1/K

(see [Kol24, Cor. 31]). Similarly, if C is (p, q)-well-placed with respect to (N ;B−,B+),
then ΨX(C) is (p′, q′)-well-placed with respect to (N ;B−,B+), where

• (p′, q′) = (q +K(p−Kq), p−Kq) if p/q ≥ K

• (p′, q′) = (Kq − p, q) if p/q ≤ K.

The effects of ΦX ,ΨX on the homology class of C are also described in [Kol24] (c.f. the
combinatorial map FX below).

Let SX be defined as in Theorem F, and let S N
X ⊂ SX ⊂ [1,∞) denote the set of

reduced fractions p/q ≥ 1 for which there exists a rational algebraic curve in X which is
(p, q)-well-placed with respect to (N ;B−,B+) or (N ;B+,B−). Defining functions

SX : (1,∞) → (1,∞), SX(x) = K − 1
x

RX : (K,∞) → (K,∞), RX(x) = K + 1
x−K ,

the above discussion shows that, for X a del Pezzo surface of degree at least 4, the sets
S N

X ∩ (1,∞) and S N
X ∩ (K,∞) are preserved by SX and RX respectively. For X rigid

(i.e. K +2 ≥ 5), let aXacc =
1
2(K +

√
K2 − 4) denote the unique fixed point of SX lying in

(1,∞).8 This agrees with the staircase accumulation point of the corresponding ellipsoid
embedding function in the case K + 2 ≥ 5, while for K + 2 = 4 we have aXacc = 1. One
can readily check the following:

(i) K − 1 < aXacc < K

7Note that ΦX ,ΨX are denoted by σ+, σ− respectively in [Kol24] and refered to as Geiser-type
involutions.

8Note that the other fixed point of x 7→ K − 1
x

is 1
aacc

< 1.
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(ii) (aXacc,∞) =
∞⊔
i=0

Si
X([K,∞))

(iii) SX is strictly increasing on (1, aXacc) and strictly decreasing on (aXacc,∞)

(iv) RX is an involution which fixes K + 1 and exchanges (K,K + 1) with (K + 1,∞).

For N a uninodal anticanonical divisor in a smooth complex projective surface X, let
p ∈ N be a smooth point, let X̃ be the blowup of X at p, and let Ñ ⊂ X̃ be the strict
transform of N . Observe that if C ⊂ X is (p, q)-well-placed with respect to N then its
strict transform C̃ ⊂ X̃ is (p, q)-well-placed with respect to Ñ . In particular, we have

S N
X ⊂ S Ñ

X̃
. (3.0.1)

Proof of Theorem F in the case X ̸= ℂℙ1 × ℂℙ1. Suppose that X is the del Pezzo sur-
face given by blowing up ℂℙ2 at points p1, . . . , pj ∈ ℂℙ2 for some j ∈ {0, . . . , 8}, where
no 3 of the points line on a line and no 6 lie on a conic. Let NX ⊂ X be any given
uninodal anticanonical divisor, and let N ⊂ ℂℙ2 be its image under the blowdown map
X → ℂℙ2. Noting that N necessarily passes through p1, . . . pj , let pj+1, . . . , p8 be some
additional distinct points in N . For i = 1, . . . , 8, let Bliℂℙ2 denote the blowup of ℂℙ2 at
p1, . . . , pi, let N (i) ⊂ Bliℂℙ2 denote the strict transform of N , and let S N (i)

Bliℂℙ2 ⊂ SBliℂℙ2

denote the set of reduced fractions p/q ≥ 1 for which there exists a rational algebraic
curve in Bliℂℙ2 which is (p, q)-well-placed with respect to N (i) (for some labeling of the
branches near the double point). Note that here we have S N (j)

Bljℂℙ2 = S NX
X .

It follows by Theorem B that S N
ℂℙ2 is dense in [aℂℙ

2

acc ,∞), where aℂℙ2

acc = τ4 ≈ 6.85.
According to (3.0.1), we have S N

ℂℙ2 ⊂ S N (1)

Bl1ℂℙ2 , so the latter is also dense in [aℂℙ
2

acc ,∞).
By applying the symmetry RX , it follows that S N (1)

Bl1ℂℙ2 is dense in (6,∞), and hence
also in [aBl1ℂℙ2

acc ,∞) by repeatedly applying the symmetry SX . Similarly, we have
S N (1)

Bl1ℂℙ2 ⊂ S N (2)

Bl2ℂℙ2 , so the latter is dense in [aBl1ℂℙ2

acc ,∞), and hence also in [5,∞) by
applying the symmetries SX and RX . Continuing inductively in this manner, we find
that S N (i)

Bliℂℙ2 is dense in [aBliℂℙ2

acc ,∞) for i = 0, . . . , 4, and in [1,∞) for i = 5. If j ≤ 5 we

are done, while for j ≥ 6 we have S N (5)

Bl5ℂℙ2 ⊂ S N (j)

Bljℂℙ2 (again by (3.0.1)), and hence the
latter is also dense in [1,∞).

Finally, to prove the claim about curves below the accumulation point, let X be a
unimonotone rigid del Pezzo surface, and note that we have cX(a) = a

a+1 whenever a is
the x-value of an outer corner of the infinite staircase cX |[1,aXacc], while cX(a) < a

a+1 for
all other values of a ∈ [1, aXacc]. At the same time, for each p/q ∈ SX ∩ [1, aXacc] we have
cX(p/q) ≥ p/q

p/q+1 by (2.0.2), and hence p/q must be the x-value of an outer corner.

Remark 3.0.2. Following up on Remark 1.0.8(1), let X be a del Pezzo surface, and
suppose that C is a rational algebraic curve in X which is (p, q)-well-placed with respect
to a uninodal anticanonical divisor N ⊂ X. Let X̃ be the blowup of X at a finite set of
points p1, . . . , pk in X ∖ C, and let C̃ denote the strict transform of C in X̃. Then C̃
still has a (p, q) cusp and satisfies indp,qℂ (C̃) = 0, whence p/q ∈ S

X̃
. In particular, the

14



condition p1, . . . , pk ∈ X ∖ C evidently holds if p1, . . . , pk lie in the smooth locus of N ,
or if we assume that p1, . . . , pk are disjoint from the space of (p, q)-well-placed rational
algebraic curves in X. Since the latter space contains no positive dimensional families
by Lemma 5.2.8, it follows as in the proof above that SX is dense in [1,∞) whenever
X is a blowup of ℂℙ2 at k ≥ 5 points in very general position9 (in fact, in this case
SX = [1,∞) ∩ℚ by Remark 6.3.4). ♢

Although our proof above of the last sentence of Theorem F(a) utilizes some knowledge
of symplectic ellipsoid embeddings, it is also possible to prove it directly using only index
and adjunction considerations, as we now explain. This approach exploits a numerical
analogue of the symmetry ΦX and can also be used to characterize the homology classes
of the outer corner curves (although we leave this to the reader).

Let X be a rigid del Pezzo surface of degree K + 2 ∈ {5, . . . , 9}, and suppose that
C is an index zero weakly (p, q)-sesquicuspidal rational algebraic curve in X for some
reduced fraction 1 < p/q < aXacc. Put A := [C] ∈ H2(X). The index zero condition is
p+q = c1(A), while the adjunction formula for C reads c1(A) = 2+A·A−(p−1)(q−1)−2δ,
where δ is the count of singularities away from the distinguished (p, q) cusp.

Lemma 3.0.3. For any rational complex projective surface X and homology classes
A,B ∈ H2(X) with nonnegative self-intersection numbers, we have (A · A) (B · B) ≤
(A ·B)2.

Proof. This follows directly from the light cone inequality discussed in [Ste04, Prob.
4.5].

Applying Lemma 3.0.3 with B = −KX the anticanonical class of X, we get A ·A ≤
(−KX ·A)2

KX ·KX
= (p+q)2

K+2 , which implies

p2 + q2 +K + 2 ≥ Kpq + 2δ(K + 2). (3.0.2)

Setting f(x) := x2−Kqx+q2+(K+2)(1−2δ), note that we have f(p) = f(Kq−p) ≥ 0.
We also have f(q) = (2−K)q2 + (K + 2)(1− 2δ), which is strictly negative unless:

(i) q = 1 and δ = 0, or

(ii) q = 2, δ = 0, and K = 3.

We now consider the “mutation”

(p′, q′;A′) := F (p, q;A) := (q,Kq − p;−qKX −A).

One can check that the above index zero and adjunction conditions still hold (with the
same value of δ) after substituting (p′, q′;A′) for (p, q;A), and the same is true for the
inverse map F−1

X (p, q;A) = (Kp− q, p;−pKX −A). Note that, unless (i) or (ii) holds, q
lies strictly between p and q′, i.e.

0 < q′ < p′ = q < p,

9Here we say that a condition holds for points p1, . . . , pk ∈ X in very general position if the
subspace of X×k for which it fails is contained in a countable union of proper subvarieties.
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where the first inequality follows from p/q < aXacc < K. Moreover, we have

p′/q′ = S−1
X (p/q) < p/q < aXacc.

Thus, by repeatedly applying FX so as to decrease q, we conclude that (p, q;A) =
F−j(p0, q0;A0) for some j ∈ ℤ≥0, where one of (i),(ii) holds for (p0, q0). In particular,
we have δ = 0, i.e. C is necessarily unicuspidal, and in case (i) we can further assume
(p0, 1) ̸= (K−1, 1) (otherwise we could apply FX again). We will such a triple (p0, q0, A0)
minimal.

Finally, is it straightforward (if tedious) to check that the minimal triples (p0, q0, A0)
correspond precisely to the seeds considered in [MS24, §2.4], which generate the outer
corner curves by successive applications of ΦX . In particular, there are J possible seed
pairs (p0, q0), where J = 3 in the cases X = Bl1ℂℙ2 and X = Bl2ℂℙ2 and J = 2 in the
remaining cases.
Remark 3.0.4. The above argument is analogous to the one appearing in [GP10, §4] to
characterize the discrete part of basic scattering diagrams. If we restrict our attention to
well-placed curves, then the numerical symmetry FX is geometrically realized by ΦX ,
after precomposing by the map (p, q) 7→ (q, p) corresponding to swapping the branches
B−,B+. If we further restrict to the two-stranded cases (i.e. J = 2), then the last
sentence of Theorem F(a) is in fact equivalent to [GP10, Thm. 5] via our fundamental
bijection (see §6.3 below). ♢

Remark 3.0.5. Fix a smooth complex projective surface X, and consider coprime p, q ∈
ℤ≥1 and a homology class A ∈ H2(X) satisfying the index zero condition p+ q = c1(A).
Observe that the adjunction inequality A ·A− c1(A) + 2 ≥ (p− 1)(q − 1) is a necessary
condition for the existence of a rational algebraic curve with a (p, q)-cusp in homology
class A, and in the case X = ℂℙ2 it follows from Theorem B that this is also a sufficient
condition.

However, for other del Pezzo surfaces the situation is more subtle. For example, in
the first Hirzebruch surface F1 = ℂℙ2#ℂℙ2, the “fake perfect exceptional” homology
class A = 9ℓ− 5e1 satisfies the index zero and adjunction conditions for (p, q) = (19, 3),
but there does not exist any rational algebraic curve C in F1 with a (19, 3) cusp such that
[C] = A (such a curve would necessarily be unicuspidal). Indeed, if such a curve existed,
then its minimal normal crossing resolution would be a nonsingular curve C̃ in a 10-point
blowup of ℂℙ2 with [C̃] = 9ℓ− 5e1 − 3e2 − · · · − 3e7 − e8 − e9 − e10, which impossibly
intersects the cubic class 3ℓ− 2e1 − e2 − · · · − e7 negatively (see [MMW24, Rmk. 2.1.15]
for more details). At the same time, this argument does not rule out a rational algebraic
curve in F1 with a (19, 3) cusp lying in homology class 8ℓ− 2e1, and this is consistent
with Theorem F since we have 19/3 > aF1

acc ≈ 5.83 (such a curve necesarrily has δ19,3 = 2
singularities).

♢
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4 The fundamental bijection

In this section, we show that any uninodal Looijenga pair (X,N ) induces a bijection
between (a) well-placed curves in X, and (b) curves in an edge blowup of a certain
singular toric surface which intersect the preferred anticanonical divisor in one point.
Here the curves in (a) are our main geometric object of interest, while the curves in
(b) are fruitfully encoded using scattering diagrams (as we discuss in the next section).
After explaining the relevant notions and terminology in §4.1, we formulate the general
bijection abstractly in §4.2. Finally, in §4.3 we give explicit small toric models for each
of the rigid del Pezzo surfaces, and we compute the corresponding bijections.

4.1 Toric models for uninodal Looijenga pairs

Following e.g. [GHK15], a Looijenga pair (X,D) is a smooth complex projective surface
X together with a nodal anticanonical divisor D with at least one node. For example:

• If V tor is a smooth toric surface with toric boundary divisor Dtor, then (V tor, Dtor)
is a Looijenga pair, which we call a toric Looijenga pair.

• If (X,D) is a Looijenga pair, X+ is the blowup of X at one or more nodes of D,
and D+ ⊂ X+ is the total transform of D, then (X+, D+) is again a Loojienga
pair, which we call a corner blowup of (X,D).

• If (X,D) is a Looijenga pair, X[S] is the blow up of X along a set of smooth points
S ⊂ D, and D[S] ⊂ X[S] is the strict transform of D, then (X[S], D[S]) is again a
Looijenga pair, which we call an edge blowup of (X,D).

We will say that a Looijenga pair (X,D) is uninodal if D has exactly one node (or
equivalently D is irreducible); we will often denote uninodal anticanonical divisors by N .

Definition 4.1.1. A toric model T for a uninodal Looijenga pair (X,N ) is:

• a sequence (X(0),N (0)), . . . , (X(k),N (k)), where (X(0),N (0)) = (X,N ) and, for
j = 1, . . . , k, X(j) is the blowup of X(j−1) at some node p(j−1) ∈ N (j−1), with
N (j) ⊂ X(j) the strict transform of N (j−1)

• 𝔼1, . . . ,𝔼ℓ ⊂ X(k) pairwise disjoint smoothly embedded rational curves with self-
intersection number −1

• a toric Looijenga pair (V tor, Dtor)

• a birational morphism X(k) → V tor sending N (k) to Dtor which has exceptional
divisors 𝔼1, . . . ,𝔼ℓ lying over smooth points S ⊂ Dtor and is otherwise an isomor-
phism.

In particular, (X(k),N (k)) is isomorphic to the edge blowup (V tor[S], Dtor[S]) of
(V tor, Dtor) along S. Note that there are j possibilities for the node p(j−1) ∈ N (j−1), and
in particular p(0) is the unique node of N .

The following notation will be useful in the sequel:
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Notation 4.1.2. Let T be a toric model for a uninodal Looijenga pair (X,D) as in
Definition 4.1.1, and assume that V tor has associated fan10 Σ in 𝕄ℝ := 𝕄⊗ℤℝ for some
rank two lattice 𝕄. Let

• −m1, . . . ,−mJ ∈ 𝕄 be the primitive generators of those rays of Σ which correspond
to a divisor of V tor containing at least one point in S.

• ℓj be the number of points in S lying on the toric divisor associated with the ray
ℝ≥0 · (−mj), for j = 1, . . . , J .

Thus ℓ =
J∑

j=1
ℓj , where 𝔼1, . . . ,𝔼ℓ are the exceptional divisors of X(k) → V tor.

Example 4.1.3. Our primary example of a uninodal Looijenga pair is (ℂℙ2,N0), where
N0 is the nodal cubic {x3 + y3 = xyz} ⊂ ℂℙ2. In §4.3, we describe our preferred toric
model Tℂℙ2 for which V tor = F3 is the third Hirzebruch surface. Here we view the fan
Σ as having ray generators (0,−1), (1, 3), (0, 1), (−1, 0) given by the primitive outward
normals to the corresponding moment polygon with vertices (0, 0), (4, 0), (1, 1), (0, 1).
For this toric model we have J = 2, m1 = (1, 0), m2 = (−1,−3), ℓ = 2, and ℓ1 = ℓ2 = 1
(c.f. Table 4.3.1). ♢

Abstractly, any uninodal Looijenga pair (X,N ) admits a toric model by [GHK15,
Prop 1.3]. In fact, there are typically many inequivalent toric models, and we will find it
fruitful to seek toric models with J as small as possible, as this will mean the associated
scattering diagram has few initial rays (see §5).

4.2 The fundamental bijection

Let (X,N ) be a uninodal Looijenga pair with a toric model T as in Definition 4.1.1. We
assume that the corresponding toric Looijenga pair (V tor, Dtor) has associated fan Σ in
𝕄ℝ for some rank two lattice 𝕄, i.e. V tor = VΣ. For nonzero m ∈ 𝕄, let gcd𝕄(m) denote
the largest j ∈ ℤ≥1 such that m ∈ j𝕄 (this is just the usual greatest common divisor of
the components of m when 𝕄 = ℤ2). Below we will define the following data associated
to T :

• for each nonzero m ∈ 𝕄, a Looijenga pair (V tor
+m [S], Dtor

+m[S]) which is typically an
edge blowup of a (weighted11) corner blowup of (V tor, Dtor)

• a distinguished irreducible component Dout ⊂ Dtor
+m[S]

• a piecewise linear map WX : ℤ2
≥0 → 𝕄

such that the following holds:
10See e.g. [CLS11; Ful93] for the definition of fans and other standard terminology from toric algebraic

geometry.
11Here weighted blowup at a point means concretely a birational transformation modeled on the

passage from VΣ to VΣ′ , where VΣ, VΣ′ are toric varieties modeled on complete fans Σ,Σ′ respectively,
such that Σ′ refines Σ by adding one ray. As explained in [MS24, §3.1], symplectically this corresponds
to an ellipsoidal blowup.
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Proposition 4.2.1. For each p, q ∈ ℤ≥0 not both zero, there is a bijection between

(a) simple rational algebraic curves in X which are (p, q)-well-placed with respect to N ,
and

(b) simple rational algebraic curves in V tor
+WX(p,q)[S] which intersect Dout in one point

with contact order gcd(p, q) and are otherwise disjoint12 from Dtor
+WX(p,q)[S].

Moreover, WX descends to a bijection from ℤ2
≥0 /∼ to 𝕄, where we put (j, 0) ∼ (0, j)

for each j ∈ ℤ≥1, and we have gcd(p, q) = gcd𝕄(WX(p, q)).

Here “simple rational algebraic curve in X” means the image C of a holomorphic map
ℂℙ1 → X which does not factor through a holomorphic map ℂℙ1 → ℂℙ1 of degree ≥ 2
(in particular C is reduced and irreducible). Since such curves have a unique holomorphic
parametrization up to biholomorphism, we will tend to view C as both a map ℂℙ1 → X
and as a subvariety of X. Note that simplicity in (a) and (b) is vacuous if gcd(p, q) = 1.
Remark 4.2.2. Note that the special cases with p = 0 or q = 0 are to be interpreted as
in Convention 3.0.1. Another noteworthy special case occurs when WX(p, q) is positively
proportional to −mi for some i ∈ {1, . . . , J}, in which case the exceptional divisors
𝔼1, . . . ,𝔼ℓ themselves contribute to (b). ♢

To begin, for each nonzero m ∈ 𝕄 not lying on any ray of Σ, let Σ+m denote the
refinement of the fan Σ obtained by adding the ray ℝ≥0 ·m (and appropriately subdividing
the cone containing it). We denote by Dout the toric divisor in the associated (typically
singular) toric surface V tor

+m := VΣ+m corresponding to the new ray ℝ≥0 ·m. Note that V tor
+m

is a weighted blowup of V tor, and there is an induced birational morphism V tor
+m → V tor.

On the other hand, if m ∈ 𝕄 is nonzero and lies on a ray of Σ, then we put simply
V tor
+m := V tor and let Dout ⊂ V tor

+m denote the toric divisor corresponding to the ray
ℝ≥0 ·m.

As in Definition 4.1.1, the image of 𝔼1 ∪ · · · ∪ 𝔼ℓ in V tor is a finite set S of smooth
points in Dtor. Let V tor[S] denote the blowup of V tor along S, so that the birational
morphism X(k) → V tor from Definition 4.1.1 lifts to an isomorphism X(k) → V tor[S].
Let V tor

+m [S] denote the blowup of V tor
+m along the preimage of S under V tor

+m → V tor,
and let X(k)

+m be the corresponding weighted blowup of X(k) fitting into the following
commutative diagram:

X
(k)
+m V tor

+m [S] V tor
+m

X(k) V tor[S] V tor.

∼=

∼=

Let Dtor
+m denote the toric boundary divisor of V tor

+m , and let Dtor
+m[S] denote its strict

transform in V tor
+m [S].

12In particular, this means that the unique intersection point of such a curve with Dout lies in the
complement of the other components of Dtor

+WX (p,q)[S].
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We now define WX(p, q) for p, q ∈ ℤ≥1 as follows. Recall that as part of the data
of the toric model T we have nodes p(j) ∈ X(j) for j = 0, . . . , k − 1, where X(j) is the
blowup of X(j−1) at p(j−1). Let B(0)

− := B− and B(0)
+ := B+ denote the local branches of

N near its node p(0), and put (p(0), q(0)) := (p, q). Next, for j = 1, . . . , k:

(i) if p(j−1) ≠ B(j−1)
− ∩ B(j−1)

+ , let B(j)
± denote the strict transform B(j−1)

± and put
(p(j), q(j)) := (p(j−1), q(j−1))

(ii) if p(j−1) = B(j−1)
− ∩ B(j−1)

+ and p(j−1) > q(j−1), let B(j)
− denote the strict transform

of B(j−1)
− in X(j), let B(j)

+ denote the exceptional divisor of X(j) → X(j−1), and put
(p(j), q(j)) := (p(j−1) − q(j−1), q(j−1))

(iii) if p(j−1) = B(j−1)
− ∩ B(j−1)

+ and q(j−1) > p(j−1), let B(j)
+ denote the strict transform

of B(j−1)
+ in X(j), let B(j)

− denote the exceptional divisor of X(j) → X(j−1), and put
(p(j), q(j)) := (p(j−1), q(j−1) − p(j−1)).

(iv) otherwise, if p(j−1) = B(j−1)
− ∩ B(j−1)

+ and p(j−1) = q(j−1), let both B(j)
− and

B(j)
+ denote the exceptional divisor of X(j) → X(j−1), and put (p(j), q(j)) :=

(p(j−1), p(j−1)) (in this case every subsequent case is necessarily of type (i)).

Let m−,m+ ∈ 𝕄 denote the primitive ray generators in Σ corresponding to the toric
boundary divisors of V tor containing the images of B(k)

− ,B(k)
+ respectively under the

composition X(k) → V tor[S] → V tor. Note that m− = m+ if and only if case (iv) above
occurs at some step, and this can only hold for finitely many initial values of p/q.

Definition 4.2.3. For p, q ∈ ℤ≥1, put

WX(p, q) :=

{
p(k) ·m− + q(k) ·m+ if m− ̸= m+

p(k) ·m− if m− = m+.

We also put WX(0, 0) := (0, 0), and W(j, 0) := W(0, j) := jmN for j ∈ ℤ≥1, where
mN ∈ 𝕄 is the primitive ray generator of Σ corresponding to the image of N (k) under
the composition X(k) → V tor[S] → V tor.

Proof of Proposition 4.2.1. Suppose first that p, q ≥ 1 and m− ̸= m+. Given a curve in X
which is (p, q)-well-placed with respect to (N ;B−,B+), a straightforward induction shows
that its strict transform in X(k) is (p(k), q(k))-well-placed with respect to (N (k);B(k)

− ,B(k)
+ )

(see §4.3 for explicit examples). Conversely, if a curve in X(k) is (p(k), q(k))-well-placed
with respect to (N (k);B(k)

− ,B(k)
+ ), then its image under X(k) → X is (p, q)-well-placed

with respect to (N ;B−,B+). Furthermore, by construction the birational morphism
X

(k)
+WX(p,q) → X(k) together with the isomorphism X

(k)
+WX(p,q)

∼= V tor
+WX(p,q)[S] give a

bijection between (p(k), q(k))-well-placed curves in X(k) and curves in V tor
+WX(p,q)[S] which

intersect Dout in one point with contact order gcd(p(k), q(k)) = gcd(p, q) and are otherwise
disjoint from Dtor

+WX(p,q)[S].
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Now suppose that p, q ≥ 1 and m− = m+. Similar reasoning shows that a curve
is (p, q)-well-placed with respect to (N ;B−,B+) if and only if its strict transform in
X(k) intersects B(k)

− = B(k)
+ in one point with contact order gcd(p, q) and is otherwise

disjoint from N (k). Under the isomorphism X(k) ∼= V tor[S], this corresponds to a curve
in V tor

+WX(p,q)[S] = V tor[S] which intersects Dout in one point with contact order gcd(p, q)
and is otherwise disjoint from Dtor

+WX(p,q)[S].
Similarly, in the cases (p, q) = (j, 0) and (p, q) = (0, j) for some j ∈ ℤ≥1, a curve

in X is (p, q)-well-placed if and only if its strict transform in X(k) intersects N (k) in
one point smooth point of N (k) with contact order j and is otherwise disjoint from
N (k). As above, under the isomorphism X(k) ∼= V tor[S] this corresponds to a curve in
V tor
+WX(p,q)[S] = V tor[S] which intersects Dout in one point with contact order j and is

otherwise disjoint from Dtor
+WX(p,q)[S].

At the same time, if for some nonzero m ∈ 𝕄 we are given a curve C in V tor
+m [S] which

intersects Dout in one point with contact order gcd𝕄(m) and is otherwise disjoint from
Dtor

+m[S], then its image C ′ under the composition V tor
+m [S] ∼= X

(k)
+m → X is (p′, q′)-well-

placed with respect to N for some p′, q′ ∈ ℤ≥0 not both zero. Note that V tor
+m [S] → X

contracts every component of Dtor
+m[S] except for the one corresponding to the ray ℝ≥0 ·mN

to the node of N . Also, if C is merely a germ of a curve in V tor
+m [S] which intersects

Dout in one point, then we can view C ′ as a curve germ in X which is (p′, q′) well-placed
with respect to N . Therefore, if m is positively proportional to mN , then C ′ ∩ N is a
smooth point of N , whence p′ = 0 or q′ = 0, and otherwise we have p′, q′ ≥ 1. Thus
the association m 7→ (p′, q′) gives a well-defined map ℤ2 → ℤ2

≥0 /∼ which is inverse
to WX(p, q) as a map from ℤ2

≥0 /∼ to 𝕄2. Lastly, it is easy to check that each step
of WX preserves the greatest common divisor of its inputs, which implies the equality
gcd(p, q) = gcd𝕄(WX(p, q)).

Remark 4.2.4.

1. Let Σred be any complete fan in 𝕄ℝ which contains the rays ℝ≥0 · (−mi) for
i = 1, . . . , J , and let V tor

+m,red[S] be defined in the same way as V tor
+m [S] but using

Σred instead of Σ. Then Proposition 4.2.1 still holds if we replace V tor
+WX(p,q)[S]

with V tor
+WX(p,q),red[S].

2. Proposition 4.2.1 also remains true if we replace V tor
+m [S] by its nonsingular resolution

given by refining the fan Σ+m in a minimal way so as to resolve the singularities
introduced adding the ray ℝ≥0 ·m. Thus we could work with only standard blowups
instead of weighted ones, at the cost of more blowups (and more notation).

♢

4.3 Explicit toric models for rigid del Pezzo surfaces

Let X be a rigid del Pezzo surface, i.e. X is diffeomorphic to Bljℂℙ2 = ℂℙ2#×jℂℙ2 for
some j ∈ {0, . . . , 4} or ℂℙ1×ℂℙ1 and is equipped with its unique Fano complex structure
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Figure 4.3.1: A toric model for ℂℙ2, with its (essentially unique) uninodal anticanonical
divisor Nℂℙ2 .

(up to biholomorphism). In the following, given any uninodal anticanonical divisor N ⊂ X,
we will give a prefered toric model TX for the Looijenga pair (X,N ) and explicitly describe
the corresponding function WX : ℤ2

≥1 → ℤ2 appearing in Proposition 4.2.1. The toric
model TX turns out to be essentially independent of the choice of N (up to deforming
the locations of the edge blowup points S ⊂ Dtor), so we often suppress N from the
notation and speak simply of the “toric model associated to X”.

We begin by explicitly describing the bijection in Proposition 4.2.1 in the case of
the complex projective plane. Figure 4.3.1 illustrates the toric model Tℂℙ2 , with k = 3,
ℓ = 2, and V tor ∼= F3 (the third Hirzebruch surface). For j = 0, 1, 2, 3 the solid curves
represent the components of N (j), while the dashed lines represent those curves which
become 𝔼1,𝔼2 in X(3). The labels give self-intersection numbers and homology classes,
and the dot represents the node p(j) ∈ N (j) at which we blow up.

In more detail, let C be a curve in ℂℙ2 which is (p, q)-well-placed with respect to N ,
with p, q ∈ ℤ≥1. We denote this situation using the diagram

N p,q N ,

where the line segment represents the node p(0) of N . Assume for the moment that
p/q /∈ {2, 1, 1/2}. After blowing up at p(0) and denoting the resulting exceptional curve
by 𝔽 (1)

1 , the diagram becomes:

N (1) p−q,q 𝔽 (1)
1 N (1) if p > q

N (1) 𝔽 (1)
1

p,q−p N (1) if p < q.

Continuing by blowing up at the node p(1) ∈ N , we have:

N (2) p−2q,q 𝔽 (2)
2 𝔽 (2)

1 N (2) if p > 2q

N (2) 𝔽 (2)
2

p−q,2q−p 𝔽 (2)
1 N (2) if q < p < 2q

N (2) 𝔽 (2)
2 𝔽 (2)

1

p,q−p N (2) if p < q,

where 𝔽 (2)
2 is the new exceptional divisor and 𝔽 (2)

1 is the strict transform of 𝔽 (1)
1 . Finally,
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we blow up at the node p(2) ∈ N (2) to arrive at:

N (3) p−2q,q 𝔽 (3)
2 𝔽 (3)

1 𝔽 (3)
3 N (3) if p > 2q

N (3) 𝔽 (3)
2

p−q,2q−p 𝔽 (3)
1 𝔽 (3)

3 N (3) if q < p < 2q

N (3) 𝔽 (3)
2 𝔽 (3)

1

2p−q,q−p 𝔽 (3)
3 N (3) if p < q < 2p

N (3) 𝔽 (3)
2 𝔽 (3)

1 𝔽 (3)
3

p,q−2p N (3) if q > 2p.

One readily checks using the classification of minimal rational surfaces that after
blowing down the (−1)-curves 𝔼1,𝔼2 ⊂ X(3) the result is isomorphic to F3. Let Σ be
the fan in ℝ2 for F3 with ray generators (0,−1), (1, 3), (0, 1), (−1, 0), corresponding to
N , 𝔽 (3)

2 , 𝔽 (3)
1 , 𝔽 (3)

3 respectively.13 Note that we have (up to reordering) ℓ1 = 1, ℓ2 = 1,
m1 = (1, 0) and m2 = (−1,−3). Then, according to Definition 4.2.3, we have:

Wℂℙ2(p, q) =


(p− 2q)(0,−1) + q(1, 3) = (q, 5q − p) if p > 2q

(p− q)(1, 3) + (2q − p)(0, 1) = (p− q, 2p− q) if q < p < 2q

(2p− q)(0, 1) + (q − p)(−1, 0) = (p− q, 2p− q) if p < q < 2p

p(−1, 0) + (q − 2p)(0,−1) = (−p, 2p− q) if q > 2p,

,

where the two middle cases coalesce. In the borderline cases p/q = 2, 1, 1/2, the strict
transform of C in X(3) intersects one of 𝔽 (3)

2 , 𝔽 (3)
1 , 𝔽 (3)

3 in one point with contact order
gcd(p, q) and is otherwise disjoint from the total transform of N , and one can check that
the above formula for Wℂℙ2(p, q) is also valid in these cases. Similarly, since mN = (0,−1),
in the cases (p, q) = (j, 0) or (p, q) = (0, j) with j ∈ ℤ≥0 we have Wℂℙ2(p, q) = (0,−j).
Note that p+ q is divisible by 3 if and only if Wℂℙ2(p, q) lies in ℤ≥0 ·m1 + ℤ≥0 ·m2.
Remark 4.3.1. It turns out that there are no (p, q)-well-placed rational curves in ℂℙ2

for p/q lying in (1/5, 1/2)∪ (1/2, 2)∪ (2, 5), so in particular both sides of the bijection in
Proposition 4.2.1 must be empty in this region. Thus apart from the cases p/q = 1/2, 2,
which correspond under Wℂℙ2(p, q) to ℝ≤0 · m1 and ℝ≤0 · m2 respectively, Wℂℙ2(p, q)
lies in the cone generated by m1 = (1, 0) and m2 = (−1,−3) whenever the bijection is
nonvacuous. Note that the cases p = 0 or q = 0 correspond under Wℂℙ2 to ℝ≥0 · (0,−1),
which could be viewed as the “center” of Cone(m1,m2). We will see that the corresponding
scattering diagram defined in §5 precisely matches this structure (c.f. Remark 5.2.2). ♢

The analogous computations for the remaining five rigid del Pezzo surfaces are similar.
The toric models are illustrated in Figures 4.3.2,4.3.3,4.3.4,4.3.5,4.3.6. The resulting
bijections as in Proposition 4.2.1 are summarized in Table 4.3.1.
Remark 4.3.2. Although we defined toric models in Definition 4.1.1 in terms of algebraic
geometry, they turn out to be closely connected with the symplectic notion of almost
toric fibrations (see e.g. [Sym; Eva23; MS24]). In fact, the toric models described above

13Note that these are the outer normal vectors to the corresponding moment polygon with vertices
(0, 0), (4, 0), (1, 1), (0, 1). Taking instead the inner normal vectors would give a different but abstractly
isomorphic fan.
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Figure 4.3.2: A toric model for ℂℙ1 × ℂℙ1.

Figure 4.3.3: A toric model for Bl1ℂℙ2.

Figure 4.3.4: A toric model for Bl2ℂℙ2.

Figure 4.3.5: A toric model for Bl3ℂℙ2.
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Figure 4.3.6: A toric model for Bl4ℂℙ2.

Figure 4.3.7: Almost toric fibrations for the unimonotone rigid del Pezzo surfaces.

naturally correspond to the minimal almost toric fibrations pictured in Figure 4.3.7,
which in turn control the infinite symplectic staircases in [Cri+20; CV22; MS24] (and
also e.g. exotic Lagrangian tori [Via17]). Comparing with Table 4.3.1, we see that J
coincides with the number of nodal rays (i.e. eigenlines of the affine monodromy – see
e.g. [MS24, §4.1c]), with ℓ1, . . . , ℓJ their multiplicities, and moreover m1, . . . ,mJ are
parallel to eigendirections up to a global GL2(ℤ)-transformation. We will elaborate on
the relationship between almost toric fibrations and toric models in a followup paper. ♢

5 From well-placed curves to scattering diagrams and back

We now explain how to detect well-placed curves using scattering diagrams. Namely,
given a uninodal Looijenga pair and a chosen toric model, Theorem 5.2.3 states that there
exists a (p, q)-well-placed curve if and only if a certain term in an associated scattering
diagram is nonzero. The main ingredient is the connection between scattering diagrams
and certain Gromov–Witten invariants discovered in [GPS10].

5.1 Review of scattering diagrams

Let 𝕄 be a rank two lattice, put 𝕄ℝ := 𝕄⊗ℤ ℝ, and let ℂ[𝕄] denote the corresponding
group algebra. As usual we will let ℕ denote the lattice dual to 𝕄. For m ∈ 𝕄, we
denote the corresponding monomial in ℂ[𝕄] by zm. Note that a choice of basis identifies
𝕄 with ℤ2 and ℂ[𝕄] with the algebra of Laurent polynomials ℂ[x, x−1, y, y−1], where
z(i,j) = xiyj .
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Table 4.3.1: Toric models and the corresponding fundamental bijection for rigid del Pezzo
surfaces.

X V tor m1, . . . ,mJ WX(p, q) ℓ1, . . . , ℓJ

ℂℙ2 F3 (1, 0), (−1,−3)
(q, 5q − p) if p/q ≥ 2
(p− q, 2p− q) if 1/2 ≤ p/q ≤ 2
(−p, 2p− q) if p/q ≤ 1/2

1,1

ℂℙ1 × ℂℙ1 F2 (1, 0), (−1,−2)
(q, 5q − p) if p/q > 3
(p− 2q, p− q) if 1 ≤ p/q ≤ 3
(−p, p− q) if p/q ≤ 1

1,2

ℂℙ2#ℂℙ2
F2 (1, 0), (0,−1), (−1,−2)

(q, 4q − p) if p/q ≥ 2
(p− q, p) if 1 ≤ p/q ≤ 2
(p− q, 2p− q) if 1/2 ≤ p/q ≤ 1
(−p, 2p− q) if p/q ≤ 1/2

1, 1, 1

ℂℙ2#×2ℂℙ2
F1 (1, 0), (−1,−1), (0,−1)

(q, 3q − p) if p/q ≥ 2
(p− q, q) if 1 < p/q ≤ 2
(p− q, 2p− q) if 1/2 ≤ p/q ≤ 1
(−p, 2p− q) if p/q ≤ 1/2

1, 1, 2

ℂℙ2#×3ℂℙ2
F1 (1, 0), (−1,−1)

(q, 3q − p) if p/q ≥ 2
(2p− 3q, p− q) if 1 ≤ p/q ≤ 2
(−p, p− q) if p/q ≤ 1

2, 3

ℂℙ2#×4ℂℙ2
F2 (1, 0), (0, 1)

(p− 2q, 2p− 3q) if p/q ≥ 2
(p− 2q, 2p− 3q) if 3/2 ≤ p/q ≤ 2
(q − p, 2p− 3q) if 1 ≤ p/q ≤ 3/2
(q − p, 2q − 3p) if p/q ≤ 1

1, 5
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In this paper, a wall is a labeled ray (d, 𝕗), where:

• d is an oriented ray in 𝕄ℝ with endpoint at the origin14

• 𝕗 ∈ ℂ[zm]JtK ⊂ ℂ[𝕄]JtK satisfies 𝕗 ≡ 1 modulo zmt, where m ∈ 𝕄 is the unique
primitive element which spans the tangent space to d in the direction of its
orientation.

We call a wall incoming (resp. outgoing) if its ray is oriented towards (resp. away
from) the origin. A scattering diagram D in 𝕄ℝ is a multiset of walls in 𝕄ℝ such
that for each k ∈ ℤ≥1 all but finitely many function labels are congruent to 1 modulo tk.
We note that the lattice 𝕄 ⊂ 𝕄ℝ is an important implicit part of the data, since as we
explain below its dual ℕ determines the wall crossing monodromy.

Let (d, 𝕗) ∈ D be a wall in 𝕄ℝ, and consider a smooth path [0, 1] → 𝕄ℝ which
has a transverse intersection with d at some time t0 ∈ (0, 1). We have the associated
wall-crossing monodromy θ

(d,𝕗),D
γ,t0

∈ AutℂJtK(ℂ[𝕄]JtK), which is defined on monomials
by:

θ
(d,𝕗),D
γ,t0

: zm 7→ 𝕗 ⟨n,m⟩zm, (5.1.1)

where n ∈ ℕ is the unique primitive element which vanishes on the tangent space to d
and satisfies ⟨n, γ′(0)⟩ > 0.

Now let γ : [0, 1] → 𝕄ℝ ∖ {⃗0} be a smooth immersion which intersects each wall of
D (or rather the corresponding ray) transversely. Let θDγ ∈ AutℂJtK(ℂ[𝕄]JtK) be given
by composing the wall-crossing monodromies in order over every intersection point of γ
with a wall of D. Note that this is typically an infinite composition, but it is nevertheless
well-defined since for any given k ∈ ℤ≥1 there are only finitely many nontrivial terms
modulo tk. Two scattering diagrams D,D′ in 𝕄ℝ are equivalent if θDγ = θD

′
γ for any

smooth immersion γ : [0, 1] → 𝕄ℝ ∖ {⃗0} which intersects the walls of both D and D′

transversely. Every scattering diagram D is equivalent to a unique one Dmin which is
minimal, i.e. no oriented rays are repeated and no label 𝕗 satisfies 𝕗 = 1. Indeed, we
simply remove any wall (d, 𝕗) with 𝕗 = 1, and we replace any two walls (d1, 𝕗1), (d2, 𝕗2)
with the same oriented ray d1 = d1 with the wall (d1, 𝕗1𝕗2).

When γ is a loop, i.e. γ(0) = γ(1), we refer to θDγ as the total monodromy of D,
noting that this is well-defined up conjugation (i.e. changing the starting point of γ) and
inversion (i.e. changing the orientation of γ). We will say that the scattering diagram D
is consistent if the total monodromy is the identity 𝟙 ∈ AutℂJtK(ℂ[𝕄]JtK).

Given any scattering diagram D as above, Kontsevich–Soibelman [KS06] showed that
there exists another scattering diagram S(D), obtained by adding (typically infinitely
many) outgoing walls to D, such that S(D) is consistent. Moreover, S(D) is unique
up to equivalence, and hence its minimal representative S(D)min is unique on the nose.
Concretely, S(D) can be constructed algorithmically from D by adding successive walls
in order to kill the total monodromy order-by-order in t (see e.g. [GPS10, Thm. 1.4]).

14We note that this is a specialization of a more general definition which does not require the ray
endpoints to lie at the origin.
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Scattering diagrams of the following form, which we call basic,15 will play a distin-
guished role in the sequel.

Definition 5.1.1. Given primitive vectors m1, . . . ,mJ ∈ 𝕄 := ℤ2 and positive integers
ℓ1, . . . , ℓJ ∈ ℤ≥1 for some J ∈ ℤ≥2, let Dℓ1,...,ℓJ

m1,...,mJ
denote the scattering diagram in ℝ2

with J incoming walls given by

Dℓ1,...,ℓJ
m1,...,mJ

:=
{(

ℝ≤0 ·m1, (1 + tzm1)ℓ1
)
, . . . ,

(
ℝ≤0 ·mJ , (1 + tzmJ )ℓJ

)}
.

Example 5.1.2. For each ℓ1, ℓ2 ∈ ℤ≥1, S(Dℓ1,ℓ2
e1,e2)min consists of the incoming walls(

ℝ≤0 · e1, (1+ tx)ℓ1
)
,
(
ℝ≤0 · e2, (1+ ty)ℓ2

)
, the outgoing walls

(
ℝ≥0 · e1, (1+ tx)ℓ1

)
,
(
ℝ≥0 ·

e2, (1 + ty)ℓ2
)
, and various additional outgoing walls of the form

(
ℝ≥0 · (a, b), 𝕗a,b

)
for

primitive (a, b) ∈ ℤ2
>0 and 𝕗a,b ∈ ℂ[z(a,b)]JtK.

For instance, for ℓ1 = ℓ2 = 1, S(D1,1
e1,e2)min ∖ D1,1

e1,e2 consists of the single wall(
ℝ≥0 · (1, 1), 1 + t2xy

)
. For ℓ1 = ℓ2 = 2, the walls appearing in S(D2,2

e1,e2)min ∖ S(D2,2
e1,e2)

have slopes (1, 1), (k, k + 1), (k + 1, k) for all k ∈ ℤ≥1, with explicit function labels (see
e.g. [GP10, §1.4]). For ℓ ≥ 3, the scattering diagram S(Dℓ,ℓ

e1,e2)min is more complicated
and involves a “dense region” where all rational slopes appear – see §6.3 below. ♢

As we explain in §6.1, any basic scattering diagram with J = 2 can be reduced to one of
the form Dℓ1,ℓ2

e1,e2 for some ℓ1, ℓ2 ∈ ℤ≥1.

5.2 Well-placed curves and Gromov–Witten theory

We will associate to any uninodal Looijenga pair (X,N ) with a toric model T the
scattering diagram

DT := Dℓ1,...,ℓJ
m1,...,mJ

, (5.2.1)

where m1, . . . ,mJ ∈ ℤ2 and ℓ1, . . . , ℓJ ∈ ℤ≥1 are the numerical data associated with T
as in Notation 4.1.2 (here for concreteness we fix an identification 𝕄 ∼= ℤ2). We will say
that the toric model T is strongly convex if the rational polyhedral cone

Cone(m1, . . . ,mJ) :=

{
J∑

i=1

cimi | c1, . . . , cJ ∈ ℝ≥0

}
⊂ ℝ2

is strongly convex, i.e. Cone(m1, . . . ,mJ) does not contain any line (or, equivalently, if
c1m1 + · · ·+ cJmJ = 0⃗ for some c1, . . . , cJ ∈ ℝ≥0 then we must have c1 = · · · = cJ = 0).
Note that the rigid del Pezzo toric models in §4.3 are all strongly convex (for J = 2 this
is automatic as long as m1 and m2 are not colinear).
Example 5.2.1. Toric models for uninodal Looijenga pairs need not be strongly convex.
For instance, let X be the blowup of ℂℙ2 at a smooth point on the nodal cubic N0 =
{x3+y3 = xyz}, and let N be the strict transform of N0 inX. Since (X,N ) and (ℂℙ2,N0)

15A closely related notion of “standard scattering diagrams” appears in [GPS10, Def. 1.10], but due to
a slightly different usage we use a different term here.
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coincide near the nodes, we can follow the same sequence of 3 blowups described in §4.3
in order to obtain a toric model for (X,N ) with J = 3, m1 = (1, 0),m2 = (−1,−3),m3 =
(0, 1) and ℓ1 = ℓ2 = ℓ3 = 1, where Cone(m1,m2,m3) = ℝ2 is evidently not strongly
convex. ♢

Remark 5.2.2. Using e.g. the connection between scattering diagrams and tropical
curve counts discussed in [GPS10, Thm 2.4], one can show that the ray of every outgoing
wall in S(Dℓ1,...,ℓJ

m1,...,mJ
)min must lie in the cone Cone(m1, . . . ,mJ). ♢

The following result shows that the existence of a (p, q)-well-placed curve in X is
equivalent to the nonvanishing of a certain term in the scattering diagram S(DT )min

obtained from DT by applying the Kontsevich–Soibelman algorithm discussed in §5.1.
For each primitive m ∈ ℤ2, let 𝕗outm ∈ ℂ[zm]JtK be the function attached to the outgoing
ray ℝ≥0 ·m in S(DT )min (or 1 if there is no such wall), let 𝕗 inm denote the same quantity
but for the incoming ray ℝ≤0 · (−m), and put

𝕗m := 𝕗outm · 𝕗 inm . (5.2.2)

Note that for basic scattering diagrams as in Definition 5.1.1 we have 𝕗 inm = 1 unless
m = −mi for some i ∈ {1, . . . , J}. For κ ∈ ℤ≥1, let

CoefS(DT )min
(zκm) ∈ ℂJtK (5.2.3)

denote the coefficient of zκm in log 𝕗m. Let WX : ℤ2
≥1 → ℤ2 be the function associated

with the toric model T as in Definition 4.2.3.

Theorem 5.2.3. Let (X,N ) be a uninodal Looijenga pair with a toric model T and asso-
ciated scattering diagram DT as in (5.2.1). For each coprime p, q ∈ ℤ≥1, if the scattering
coefficient CoefS(DT )min

(zWX(p,q)) is nonzero, then there exists a rational algebraic curve
in X which is (p, q)-well-placed with respect to N . The converse is also true provided
that T is strongly convex.

Remark 5.2.4. In the case gcd(p, q) > 1, it should in principle be possible to de-
tect simple (p, q)-well-placed curves using the scattering diagram DT , by replacing
CoefS(DT )min

(zWX(p,q)) with the corresponding BPS state counts defined in [GPS10, §6],
which subtract off multiple cover contributions. These would typically correspond to
curves in X having a cusp with multiple Puiseux pairs (c.f. [MS24, §3.3]). ♢

Before proving Theorem 5.2.3, we first recall the general connection between scattering
diagrams and Gromov–Witten theory proved in [GPS10], after introducing some necessary
notation. Suppose that for some J ∈ ℤ≥2 we are given:

• pairwise distinct primitive integer vectors m1, . . . ,mJ ∈ ℤ2

• ordered partitions P1, . . . ,PJ ,16 where Pi = (ρ1i , . . . , ρ
ℓi
i ) has length ℓi ∈ ℤ≥1 for

i = 1, . . . , J .
16By definition, an ordered partition of length ℓ ∈ ℤ≥1 is simply a tuple P = (ρ1, . . . , ρℓ) of

nonnegative integers. We will denote the sum of its parts by |P| = ρ1 + · · · + ρℓ and the length by
len(P) = ℓ.
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Put mout := |P1|m1 + · · ·+ |PJ |mJ . In the following, we will use the shorthand notation
m⃗ := (m1, . . . ,mJ) and P⃗ := (P1, . . . ,PJ). Following [GPS10], we will define correspond-
ing relative Gromov–Witten-type invariants Nm⃗[P⃗] ∈ ℚ which control the scattering
coefficients in S(Dℓ1,...,ℓJ

m1,...,mJ
)min.

We will assume for ease of exposition that Cone(−m1, . . . ,−mJ ,mout) = ℝ2.17 Let
Ym⃗ denote the (typically singular) toric surface associated to the complete fan in ℝ2 with
ray generators −m1, . . . ,−mJ ,mout, and let Y o

m⃗ be the result after removing all of the
toric fixed points (i.e. 0-dimensional orbits) from Ym⃗. Here by slight abuse of notation
Ym⃗ and Y o

m⃗ implicitly depend on P⃗ (via mout). Let D1, . . . , DJ , Dout denote the toric
divisors in Ym⃗ associated to −m1, . . . ,−mJ ,mout respectively, and let Do

1, . . . , D
o
J , D

o
out

denote their respective restrictions to Y o
m⃗ . Note that in principle we allow the degenerate

case when mout is negatively proportional to some mi, in which case Dout = Di (this is
ruled out if Cone(m1, . . . ,mJ) is strongly convex).

For i = 1, . . . , J , let x1i , . . . , x
ℓi
i be pairwise distinct points in Do

i . We denote the
blowup of Ym⃗ at all of these points by Ym⃗[P⃗], with corresponding exceptional divisors
𝔼j
i ⊂ Ym⃗[P⃗] for i = 1, . . . , J and j = 1, . . . , ℓi. We will denote the strict transform of
Di ⊂ Ym⃗ in Ym⃗[P⃗] by Di[P⃗], and (by slight abuse) we denote the strict transform of
Dout ⊂ Ym⃗ in Ym⃗[P⃗] again by Dout. Let Do

1[P⃗], . . . , Do
J [P⃗], Do

out denote the restrictions
to Ym⃗[P⃗]o of D1[P⃗], . . . , DJ [P⃗], Dout respectively.

Put κ := gcd(mout) ∈ ℤ≥1, and let β
P⃗
∈ H2(Ym⃗[P⃗]) be the homology class character-

ized by:

• β
P⃗
·Dout = κ

• β
P⃗
·Di[P⃗] = 0 for i = 1, . . . , J (excluding i = j if Dout = Dj [P⃗])

• β
P⃗
· 𝔼j

i = ρji for all i = 1, . . . , J and j ∈ 1, . . . , ℓi.

Let Mβ
P⃗
(Ym⃗[P⃗]/Dout) denote the moduli space of holomorphic maps u : ℂℙ1 → Ym⃗[P⃗]

such that

• u lies in homology class β
P⃗

• u has full contact order κ with Dout (at an unspecified point) at ∞ ∈ ℂℙ1,

modulo biholomorphic reparametrizations of ℂℙ1 fixing ∞. Note that any curve in
Mβ

P⃗
(Ym⃗[P⃗]/Dout) necessarily has image contained in Y o

m⃗ [P⃗] by positivity of intersections.
Now let Mβ

P⃗
(Ym⃗[P⃗]/Dout) denote the compactification of Mβ

P⃗
(Ym⃗[P⃗]/Dout) by rela-

tive stable maps (in the sense of [Li01]), and let Mβ
P⃗
(Y o

m⃗ [P⃗]/Do
out) ⊂ Mβ

P⃗
(Ym⃗[P⃗]/Dout)

denote the open subspace of maps which avoid Ym⃗[P⃗]∖ Y o
m⃗[P⃗]. Strictly speaking, this

is defined in [GPS10, §5.1] by first adding additional rays in order to desingularize
17Note that the condition Cone(−m1, . . . ,−mJ ,mout) = ℝ2 ensures that Ym⃗ is a compact surface, and

rules out e.g. m1 = (1, 0),m2 = (0, 1),mout = (1, 0). This condition can always be achieved by adding
further rays to the fan, without essentially changing our curve counts of interest (at the cost of additional
notation).
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Ym⃗, but we will suppress this from the notation. According to [GPS10, Prop. 5.1],
Mβ

P⃗
(Y o

m⃗[P⃗]/Do
out) is compact and carries a natural virtual fundamental class, and we

define Gromov–Witten-type invariants by:

Nm⃗[P⃗] := #Mβ
P⃗
(Y o

m⃗[P⃗]/Do
out) :=

∫
[Mβ

P⃗
(Y o

m⃗
[P⃗]/Do

out)]
vir

1 ∈ ℚ.

Theorem 5.2.5 ([GPS10, Thm. 5.4], extended as in [GPS10, §5.7]). Fix m1, . . . ,mJ ∈
ℤ2 primitive and pairwise distinct and ℓ1, . . . , ℓJ ∈ ℤ≥1 for some J ∈ ℤ≥2, and let
Dℓ1,...,ℓJ

m1,...,mJ
be the associated basic scattering diagram in ℝ2. For each primitive m ∈ ℤ2,

let 𝕗outm ∈ ℂ[zm]JtK be the label attached to the outgoing ray ℝ≥0 · m in S(Dℓ1,...,ℓJ
m1,...,mJ

)min.
Then we have:

log 𝕗outm =

∞∑
κ=1

∑
|P1|m1+···+|PJ |mJ=κm

κNm⃗[P⃗]t|P1|+···+|PJ |zκm,

where the sum is over all ordered partitions P1, . . . ,PJ of respective lengths ℓ1, . . . , ℓJ

such that
J∑

i=1
|Pi|mi = κm.

Remark 5.2.6. In particular, it follows that Nm⃗[P⃗] does not depend on the precise
locations of the blowup points {xji} (this can also be checked directly by a compactness
argument, c.f. [GPS10, §5.2]). ♢

A typical element of Mβ
P⃗
(Y o

m⃗[P⃗]/Do
out) consists of various curve components which

are organized into a main level in Y o
m⃗[P⃗] (possibly vacuous) and some number (possibly

zero) of “neck” levels in the ℂℙ1-bundle ℂℙ(𝟙Do
out

⊕NDo
out

) → Do
out, where NDo

out
is the

normal bundle of Do
out in Y o

m⃗[P⃗], subject to suitable matching, tangency, and stability
conditions.18 In particular, there is a forgetful map which projects neck components
down to Do

out:

pr : Mβ
P⃗
(Y o

m⃗[P⃗]/Do
out) → Mβ

P⃗
(Ym⃗[P⃗]),

where the target is the usual moduli space of stable maps ℂℙ1 → Ym⃗[P⃗] in homology
class β

P⃗
.

Recall that we put κ := gcd(mout), where mout :=
J∑

i=1
|Pi|mi.

Lemma 5.2.7. If κ = 1 and Mβ
P⃗
(Y o

m⃗ [P⃗]/Do
out) ̸= ∅, then there exists a rational algebraic

curve ℂℙ1 → Y o
m⃗[P⃗] which intersects Do

out transversely in one point and is otherwise
disjoint from Do

1[P⃗], . . . , Do
J [P⃗], Do

out. If we further assume that Cone(m1, . . . ,mJ) is
strongly convex, then we have

Mβ
P⃗
(Y o

m⃗[P⃗]/Do
out) = Mβ

P⃗
(Ym⃗[P⃗]/Dout).

18More formally, [GPS10] uses the language of destabilizations, while [Li01] uses the language of
expanded degenerations.
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Proof. First note that we can assume that mout is not negatively proportional to some mi,
since in that case we have Dout = Di, whence we can take our curve to be any of the excep-
tional divisors 𝔼j

i for j ∈ {1, . . . , ℓi} (and this situation cannot occur if Cone(m1, . . . ,mJ)

is strongly convex). Given C ∈ Mβ
P⃗
(Y o

m⃗[P⃗]/Do
out), note that each component of

pr(C) ∈ Mβ
P⃗
(Ym⃗[P⃗]) must have image distinct from each of D1[P⃗], . . . , DJ [P⃗], Dout, and

hence it must intersect each of these nonnegatively (c.f. [GP10, §4.2]). By positivity of
intersections and the definition of the homology class β

P⃗
∈ H2(Ym⃗[P⃗]), it follows that:

• each component of pr(C) has trivial intersection number with each of
D1[P⃗], . . . , DJ [P⃗]

• exactly one component C0 of pr(C) satisfies C0 · Dout = 1, and the remaining
components of pr(C) have trivial intersection number with Dout.

In particular, C0 intersects Dout transversely in exactly one point and is disjoint from
each of D1[P⃗], . . . , DJ [P⃗].

Under the further assumption that Cone(m1, . . . ,mJ) is strongly convex, we claim that
pr(C) = C0, which then implies Mβ

P⃗
(Y o

m⃗[P⃗]/Do
out) = Mβ

P⃗
(Ym⃗[P⃗]/Dout) by stability

considerations. Since pr(C) is a stable map, it suffices to show that any other component
C1 of pr(C) would necessarily be constant. To see this, note that for m′

out := mout/κ
with κ := gcd(mout) and any n ∈ ℕ, we have

⟨m′
out, n⟩Dout −

J∑
i=1

⟨mi, n⟩Di

vanishes as an element of the Chow group A1(Ym⃗) (see e.g. [Ful93, §3.3]). Letting C1

denote the image of C1 in Ym⃗, which necessarily satisfies C1 ·Dout = 0, we then have

0 = (Dout · C1)m
′
out =

J∑
i=1

(Di · C1)mi =
J∑

i=1

cimi

for ci := Di · C1 ∈ ℤ≥0. Strong convexity then implies c1 = · · · = cJ = 0, meaning that
C1 is constant, and hence C1 is also constant.

Lemma 5.2.8. For any Looijenga pair (X,N ), there are no positive-dimensional families
of rational algebraic curves in X which intersect N in a single point.

Proof. This follows exactly as in the proof of [Bou21, Lem. 1.1], which in turn is based on
the argument that complex K3 surfaces are not uniruled (see e.g. [Huy16, §4.1]). Namely,
let ω be a holomorphic two-form on X ∖N with simple poles along N . Given such a
positive-dimensional family, we could find a dominant rational map F : ℂℙ1×S 99K X for
some Riemann surface S, such that F ∗ω is a holomorphic two-form on (ℂℙ1 ∖ {∞})× S
with simple poles along {∞} × S. Let X be a nonvanishing holomorphic vector field
defined on some open subset U ⊂ S, viewed as a vector field on ℂℙ1 × U which is trivial
in the first factor. Then, by contracting F ∗ω with X and restricting to ℂℙ1 × {s} for
s ∈ U , we get a one-form on ℂℙ1 ∖ {∞} with a simple pole along {∞}, which is a
contradiction (the pole order must be at least 2).
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In the strongly convex case, Lemma 5.2.7 says that every curve in Mβ
P⃗
(Y o

m⃗ [P⃗]/Do
out)

must be irreducible, while Lemma 5.2.8 further rules out positive dimensional families of
irreducible curves. Since we are considering algebraic Gromov–Witten type invariants
defined using integrable complex structures, these together have the following useful
consequence.

Corollary 5.2.9. If κ = 1 and Cone(m1, . . . ,mJ) is strongly convex, then every curve
in Mβ

P⃗
(Y o

m⃗[P⃗]/Do
out) counts as a positive integer. In particular, we have Nm⃗[P⃗] ∈ ℤ≥0,

with Nm⃗[P⃗] > 0 if and only if Mβ
P⃗
(Ym⃗[P⃗]/Dout) ̸= ∅.

As before, let T be a toric model for a uninodal Looijenga pair (X,N ) with associated
data m⃗ = (m1, . . . ,mJ) and ℓ1, . . . , ℓJ ∈ ℤ≥1 as in Notation 4.1.2, and with toric Looijenga
pair (V tor, Dtor) and blowup set S ⊂ Dtor as in Definition 4.1.1. Given any ordered

partitions P⃗ = (P1, . . . ,PJ) with lengths ℓ1, . . . , ℓJ and putting mout :=
J∑

i=1
|Pi|mi, note

that we can identify Ym⃗ with V tor
+mout,red

and Ym⃗[P⃗] with V tor
+mout,red

[S] (recall Remark 4.2.4).
With these preliminaries, we are now ready to prove Theorem 5.2.3.

Proof of Theorem 5.2.3. Suppose first that the scattering coefficient
CoefS(DT )min

(zWX(p,q)) is nonzero. According to (5.2.2), we have either 𝕗outWX(p,q) ̸= 1 or

𝕗 inWX(p,q) ̸= 1 (or both). In the former case, by Theorem 5.2.5 we have Nm⃗[P⃗] ̸= 0 for

some ordered partitions P1, . . . ,PJ of lengths ℓ1, . . . , ℓJ such that
J∑

i=1
|Pi|mi = WX(p, q).

Thus Mβ
P⃗
(Y o

m⃗ [P⃗]/Do
out) ̸= ∅, and hence by Lemma 5.2.7 there exist a rational algebraic

curve in Ym⃗[P⃗] ∼= V tor
+WX(p,q),red which intersects Dout once transversely and is otherwise

disjoint from D1[P⃗], . . . , DJ [P⃗], Dout. It then follows from the bijection Proposition 4.2.1
that there exists a rational algebraic curve in X which is (p, q)-well-placed with respect
to N .

On the other hand, in the case 𝕗 inWX(p,q) ̸= 1, we must have WX(p, q) = −mi for
some i ∈ {1, . . . , J} and hence V tor

+WX(p,q)[S] = V tor[S] (by definition). Then there is an
exceptional divisor of V tor

+WX(p,q)[S] → V tor
+WX(p,q) which intersects Dout transversely in

one point and is otherwise disjoint from Dtor
+WX(p,q)[S], whence Proposition 4.2.1 again

produces a (p, q)-well-placed curve in X.
Now assume that T is strongly convex and that there exists a rational alge-

braic curve in X which is (p, q)-well-placed with respect to N , where gcd(p, q) = 1.
Then gcd(WX(p, q)) = 1 by Proposition 4.2.1, and, assuming that WX(p, q) is not
equal to −mi for some i ∈ {1, . . . , J}, it follows by Proposition 4.2.1 that we have
Mβ

P⃗
(Ym⃗[P⃗]/Dout) ̸= ∅ for some ordered partitions P⃗ = (P1, . . . ,PJ) of lengths

ℓ1, . . . , ℓJ such that
∑J

i=1 |Pi|mi = WX(p, q). By Theorem 5.2.5 we then have

CoefS(DT )min
(zWX(p,q)) =

∑
|P′

1|m1+···+|P′
J |mJ=WX(p,q)

Nm⃗[P⃗
′]t|P

′
1|+···+|P′

J |.
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Since by Corollary 5.2.9 the terms Nm⃗′ [P⃗′] are all nonnegative, we have Nm⃗[P⃗] > 0,
whence CoefS(DT )min

(zWX(p,q)) ̸= 0.
Finally, if WX(p, q) = −mi for some i ∈ {1, . . . , J}, then by strong convexity there

are no outgoing rays ℝ≥0 · WX(p, q) appearing in S(DT )min (c.f. Remark 5.2.2), and
hence 𝕗WX(p,q) = 𝕗 in−mi

= (1 + tzmi)ℓi , so CoefS(DT )min
(zWX(p,q)) = ℓit ̸= 0.

Observe that if T is a strongly convex toric model for a uninodal Looijenga pair (X,N )
with data m1, . . . ,mJ ∈ ℤ2 and ℓ1, . . . , ℓJ ∈ ℤ≥1, then for any given m ∈ ℤ2 there are only
finitely many ordered partition tuples P⃗ = (P1, . . . ,PJ) such that |P1|m1+· · ·+|PJ |mJ =
m. It follows that CoefS(DT )min

(zm) is a polynomial in t (i.e. it lies in ℂ[t]), and in
particular has a well-defined t = 1 specialization CoefS(DT )min

(zm)|t=1 ∈ ℂ. By the
results of this section, for coprime p, q ∈ ℤ≥1, the quantity

NX,N (p, q) :=
∑

∑
|Pi|mi=WX(p,q)

Nm⃗[P⃗] = CoefS(DT )min
(zWX(p,q))|t=1 (5.2.4)

can be interpreted as the algebraic count of rational algebraic curves in X which are
(p, q)-well-placed with respect to N .

Although in this paper we are primarily concerned with understanding when
NX,N (p, q) is nonzero, it is also very natural to study the counts themselves. For
example, one can show that NX,N (p, q) = 1 whenever X is a rigid del Pezzo surface and
p/q is the x-value of an outer corner point of the infinite staircase cX |[1,aXacc], and we have
Nℂℙ2,N0

(p, q) = 3 for the ghost staircase points (i.e. p
q = 8

1 ,
55
8 ,

377
55 etc, c.f. [MS24, §7.1]).

In the case q = 1, computer experiments suggest the following conjectural formula for all
d ∈ ℤ≥1:

Nℂℙ2,N0
(3d− 1, 1) = 2(4d−3)!

d!(3d−1)! .

Note that any given count NX,N (p, q) can easily be computed algorithmically (see
e.g. [Grä22]), and, when X is a rigid del Pezzo surface, each such count agrees with
infinitely many others using the symmetries discussed in §3 (or their scattering diagram
counterparts as in [GP10, §5]).

6 Basic scattering diagrams

Using Theorem 5.2.3, we have now reduced the existence of (p, q)-well-placed curves in a
uninodal Looijenga pair to the nonvanishing of certain terms in an associated scattering
diagram, so it remains to understand when these scattering terms are nonzero. We first
discuss in §6.1 the change of lattice trick from [Gro+18, §C.3], which reduces the study
of arbitary basic scattering diagrams with J = 2 incoming rays to simplified diagrams of
the form Dℓ1,ℓ2

e1,e2 for some ℓ1, ℓ2 ∈ ℤ≥1. Then, in §6.2 we review some recent advances in
[GP10; Gro+18; GL23] which imply scattering positivity for these simplified diagrams.
Finally, in §6.3 we combine the preceding results in order to conclude the proofs of
Theorems B and F.
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6.1 Changes of lattice

Let 𝕄 be a rank two lattice, and let 𝕄′ ⊂ 𝕄 be a rank two sublattice, with finite
index denoted by ind(𝕄′ ⊂ 𝕄) ∈ ℤ≥1. Note that there is an inclusion-induced linear
isomorphism 𝕄′

ℝ
∼=−→ 𝕄ℝ, and the dual lattice ℕ := homℤ(𝕄,ℤ) is a sublattice of

ℕ′ := homℤ(𝕄′,ℤ). For each nonzero m′ ∈ 𝕄′, put

ν(m′) := ind
(
Annℕ(m

′) ⊂ Annℕ′(m′)
)
, (6.1.1)

where Annℕ(m
′) := {n ∈ ℕ | ⟨n,m′⟩ = 0} (resp. Annℕ′(m′)) denotes the annihilator of

m′ in ℕ (resp. ℕ′). Noting that ν(m′) depends only on the ray d = ℝ≥0 ·m′ spanned by
m′, we will sometimes also denote ν(m′) by ν(d).
Example 6.1.1. Let 𝕄′ be the sublattice of 𝕄 = ℤ2 generated by m1 = (1, 0) and
m2 = (−1,−3). Note that we have the natural identifications ℕ ∼= ℤ2 and

ℕ′ ∼= {(i, j) ∈ ℝ2 | ⟨(i, j),m1⟩, ⟨(i, j),m2⟩ ∈ ℤ} = ℤ× 1
3ℤ.

We have Annℕ(m1) = ℤ⟨(0, 1)⟩ and Annℕ′(m1) = ℤ⟨(0, 13)⟩, and thus ν(m1) = 3. Simi-
larly, we have Annℕ(m2) = ℤ⟨(3,−1)⟩ and Annℕ′(m2) = ℤ⟨(1,−1

3)⟩, and thus ν(m2) = 3.
On the other hand, we have ν(m1 +m2) = ν(0,−3) = ν(0,−1) = 1. ♢

For any rank two lattice 𝕄, ν ∈ ℤ≥1, and 𝕗 ∈ ℂ[𝕄]JtK with 𝕗 ≡ 1 modulo t, let
𝕗1/ν ∈ ℂ[𝕄]JtK denote the unique νth root of 𝕗 satisfying 𝕗1/ν ≡ 1 modulo t. The
following simple observation is the basis of the “change of lattice trick” from [Gro+18,
§C.3].

Lemma 6.1.2. Let 𝕄′ be a rank two sublattice of a rank two lattice 𝕄, let D be a
scattering diagram in 𝕄′

ℝ which is consistent, and let D√ be the scattering diagram in
𝕄ℝ defined by

D√ := {(d, 𝕗1/ν(d)) | (d, 𝕗) ∈ D}.

Then D√ is also consistent.

In particular, since S(D) is consistent for any scattering diagram D in 𝕄′
ℝ, we have

that S(D)√ is a consistent scattering diagram in 𝕄ℝ. Then S(D)√ and S(D√) must be
equivalent since they are both consistent and have the same incoming walls, and so we
have

S(D√)min =
(
S(D)√

)
min

=
(
S(D)min

)
√
. (6.1.2)

Proof of Lemma 6.1.2. Suppose that γ : [0, 1] → 𝕄′
ℝ is a smooth loop which intersects

each wall of D transversely. Let (d, 𝕗) be a wall of D such that γ intersects d at some
t0 ∈ (0, 1). Let n ∈ ℕ (resp. n′ ∈ ℕ′) be the unique primitive element which vanishes on
d and pairs positively with γ′(0), so that we have n = ν(d)n′. Then for any m′ ∈ 𝕄′ we
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have

θ
(d,𝕗1/ν(d)),D√
γ,t0

(zm
′
) = (𝕗1/ν(d))⟨n,m′⟩zm

′

= (𝕗1/ν(d))ν(d)⟨n′,m′⟩zm
′

= 𝕗 ⟨n′,m′⟩zm
′

= θ
(d,𝕗),D
γ,t0

(zm
′
).

It follows that θ
D√
γ (zm

′
) = θDγ (z

m′
) = zm

′ for any m′ ∈ 𝕄′.

To conclude that θ
D√
γ = 𝟙 ∈ AutℂJtK(ℂ[𝕄]JtK), note that for any m ∈ 𝕄 we have

Km ∈ 𝕄′ for some K ∈ ℤ≥1, so

(θ
D√
γ (zm))K = θ

D√
γ (zKm) = zKm = (zm)K ,

and hence θ
D√
γ (zm) = zm since θ

D√
γ = 𝟙 modulo t.

There is also a straightforward notion of isomorphism of scattering diagrams which
plays well with the Kontsevich–Soibelman algorithm. Given a lattice isomorphism
ϕ : 𝕄1

∼=−→ 𝕄2, let ϕℝ : (𝕄1)ℝ → (𝕄2)ℝ denote the induced isomorphism of real vector
spaces. For an oriented ray d ⊂ (𝕄1)ℝ, we endow the corresponding ray ϕℝ(d) ⊂ (𝕄2)ℝ
with its induced orientation. For m ∈ 𝕄1 nonzero and 𝕗 ∈ ℂ[zm]JtK, we obtain an element
ϕ∗(𝕗) ∈ ℂ[zϕ(m)]JtK by replacing each instance of zm with zϕ(m). The following is more or
less immediate from the definitions:

Lemma 6.1.3. Let ϕ : 𝕄1
∼=−→ 𝕄2 be an isomorphism of rank two lattices, let D1 be a

scattering diagram in (𝕄1)ℝ which is consistent, and let ϕ∗(D1) be the scattering diagram
in (𝕄2)ℝ defined by

ϕ∗(D1) := {(ϕℝ(d), ϕ∗(𝕗) | (d, 𝕗) ∈ D1}.

Then ϕ∗(D1) is also consistent.

Example 6.1.4. Consider the lattices 𝕄 = ℤ2 and 𝕄′ = ⟨m1,m2⟩ = ℤ × 3ℤ for
m1 = (1, 0) and m2 = (−1,−3), and let D denote D3,3

m1,m2 , but viewed as a scattering
diagram in 𝕄′

ℝ, i.e. with respect to the lattice 𝕄′. Then D√ is the basic scattering
diagram D1,1

m1,m2 in 𝕄ℝ = ℝ2, and by (6.1.2) we have S(D1,1
m1,m2)min =

(
S(D)min

)
√
. Thus

in order to compute S(D1,1
m1,m2)min it essentially suffices to compute S(D)min. In turn,

using the isomorphism ϕ : 𝕄′ → ℤ2 sending mi to ei for i = 1, 2, Lemma 6.1.3 reduces
S(D)min to the basic scattering diagram S(D3,3

ϕ(m1),ϕ(m2)
)min = S(D3,3

e1,e2)min in ℝ2. ♢

Generalizing Example 6.1.4, we will typically apply the above lemmas as follows. Put
𝕄 := ℤ2, and let Dℓ1,...,ℓJ

m1,...,mJ
denote the basic scattering diagram in 𝕄ℝ = ℝ2 specified

by some primitive vectors m1, . . . ,mJ ∈ ℤ2 and positive integers ℓ1, . . . , ℓJ ∈ ℤ≥1 as in
Definition 5.1.1. Let 𝕄′ ⊂ 𝕄 be a sublattice containing m1, . . . ,mJ , and let D be the
scattering diagram in 𝕄′

ℝ given by

D = {(ℝ≤0 ·mi, (1 + tzmi)ν(mi)ℓi) | i = 1, . . . , J}.
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According to Lemma 6.1.2, the scattering diagram S(D)min straightforwardly determines
S(Dℓ1,...,ℓJ

m1,...,mJ
)min and vice versa. Moreover, after choosing a lattice isomorphism ϕ :

𝕄′ ∼=−→ ℤ2, we can identify D via Lemma 6.1.3 with another basic scattering diagram
Dν(m1)ℓ1,...,ν(mJ )ℓJ

ϕ(m1),...,ϕ(mJ )
.

In the particular case J = 2, we can take 𝕄′ to be the sublattice ⟨m1,m2⟩ of 𝕄 = ℤ2,
and ϕ : 𝕄′ → ℤ2 to be the lattice isomorphism with ϕ(mi) = ei for i = 1, 2. Note
that each outgoing ray appearing in S(Dℓ1,ℓ2

m1,m2)min is necessarily of the form ℝ≥0 ·m for
some m = am1 + bm2 ∈ ℤ2 with (a, b) ∈ ℤ2

≥0. Let 𝕗 ℓ1,ℓ2m1,m2(m) ∈ ℂ[zm]JtK denote the label
attached to the ray ℝ≥0 ·m in S(Dℓ1,ℓ2

m1,m2)min. Combining Lemmas 6.1.2 and 6.1.3 then
gives:

Corollary 6.1.5. For any ℓ1, ℓ2 ∈ ℤ≥1, primitive noncolinear m1,m2 ∈ ℤ2, and a, b ∈
ℤ≥0, we have

𝕗 ℓ1,ℓ2m1,m2
(am1 + bm2) =

(
ϕ−1
∗ (𝕗ν(m1)ℓ1,ν(m2)ℓ2

e1,e2 (a, b))
)1/ν(am1+bm2)

, (6.1.3)

where ϕ−1
∗ (𝕗ν(m1)ℓ1,ν(m2)ℓ2

e1,e2 (a, b)) is given by replacing each instance of z(a,b) in
𝕗ν1ℓ1,ν2ℓ2e1,e2 (a, b) with zam1+bm2.

Because Coef
S(Dℓ1,ℓ2

m1,m2
)min

(zm) is defined in (5.2.3) as a coefficient in the function
log 𝕗m, we may conclude:

Corollary 6.1.6. In the context of Corollary 6.1.5, we have

Coef
S(Dℓ1,ℓ2

m1,m2
)min

(zm) =

{
1

ν(m) CoefS(Dν(m1)ℓ1,ν(m2)ℓ2
e1,e2

)min
(z(a,b)) if m = am1 + bm2

0 if m ∈ 𝕄′ ∖𝕄.

As a consequence, given a toric model of a Looijenga pair with J = 2 incoming walls,
we can read off counts of well-placed curves as in (5.2.4) by applying the Kontsevich–
Soibelman algorithm to a particularly simple basic scattering diagrams of the form
studied in e.g. [GP10; GL23].

Corollary 6.1.7. Suppose that (X,N ) is a uninodal Looijenga pair which has a toric
model T with J = 2, with data m1,m2, ℓ1, ℓ2 as in Notation 4.1.2. Then for any coprime
p, q ∈ ℤ≥1 we have

NX,N (p, q) =

{
1

ν(WX(p,q)) CoefS(Dν(m1)ℓ1,ν(m2)ℓ2
e1,e2

)min
(zϕ(WX(p,q)))|t=1 if WX(p, q) ∈ ⟨m1,m2⟩

0 if WX(p, q) /∈ ⟨m1,m2⟩,

where ϕ is the linear map ℝ2 → ℝ2 with ϕ(mi) = ei for i = 1, 2.

Example 6.1.8. Recall that (ℂℙ2,N0) has a toric model Tℂℙ2 with m1 = (1, 0),m2 =
(−1,−3) and ℓ1 = ℓ2 = 1, where N0 = {x3 + y3 = xyz} is our standard nodal cubic.
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Continuing Examples 6.1.1 and 6.1.4, observe that for any primitive m = (i, j) ∈ ℤ2 we
have

ν(m) =

{
3 if j ≡ 0 mod 3

1 otherwise,

and in fact ν(Wℂℙ2(p, q)) = 3 for any coprime p, q ∈ ℤ≥1 with p + q divisible by 3.
Together with Corollary 6.1.7, we then have

Nℂℙ2,N0
(p, q) = 1

3 CoefS(D3,3
e1,e2

)min
(zϕ(Wℂℙ2 (p,q)))|t=1, (6.1.4)

where ϕ is represented by the matrix 1
3

(
3 −1
0 −1

)
=

(
1 −1
0 −3

)−1.
♢

Remark 6.1.9. In principle we could extend the count NX,N (p, q) of (p, q)-well-placed
curves to the case with gcd(p, q) > 1 using (5.2.4), although this generally involves
multiple covers and possibly more degenerate configurations. A noteworthy special
case is when (p, q) = (κ, 0) (or equivalently (0, κ)) for some κ ∈ ℤ≥1, interpreted as in
Convention 3.0.1 as the count of rational algebraic curves in X which intersect N in
one nonsingular point with contact order κ. For instance, in the case X = ℂℙ2, we
have Wℂℙ2(3κ, 0) = (0,−3κ), which is sent to (κ, κ) by the map ϕ from Example 6.1.8.
According to a suitable extension of Corollary 6.1.7, Nℂℙ2,N0

(3κ, 0) can be read off from
the label 𝕗3,3e1,e2(1, 1) of the ray ℝ≥0 · (1, 1) in S(D3,3

e1,e2)min. As it happens, an explicit
formula for 𝕗 ℓ,ℓe1,e2(1, 1) for any ℓ ∈ ℤ≥1 was conjectured by Gross and Kontsevich and
proved by Reineke in [Rei11]. Incidentally, the analogous count in (ℂℙ2, E) with E a
nonsingular elliptic curve has received much recent attention in the form of Takahashi’s
conjecture (see e.g. [Bou21]). ♢

6.2 Scattering positivity results

Basic scattering diagrams of the form S(Dℓ1,ℓ2
e1,e2)min for ℓ1, ℓ2 ∈ ℤ≥1 were discussed in

detail in [GP10], and studied empirically based on computer calculations in e.g. [GPS10,
Ex. 1.6] and [Gro+18, Ex. 1.15]. In particular, [GP10, §4] gives a complete conjectural
picture for the scattering pattern of these scattering diagrams, i.e. the set of all rays
with nontrivial function labels. Note that, apart from the incoming rays ℝ≤0 · (1, 0) and
ℝ≤0 · (0, 1) and the outgoing rays ℝ≥0 · (1, 0) and ℝ≥0 · (0, 1), all other rays of S(Dℓ1,ℓ2

e1,e2)min

are outgoing with positive rational slope.
We will restrict to the case ℓ1ℓ2 > 4, since the remaining cases are much simpler and

not directly relevant for us. Let

ξℓ1,ℓ2± := ℓ2
2

(
1±

√
1− 4

ℓ1ℓ2

)
∈ ℝ>0

denote the roots of the polynomial Rℓ1,ℓ2(t) =
1
ℓ2
t2− t+ 1

ℓ1
, and define the dense region

of S(Dℓ1,ℓ2
e1,e2)min in ℝ2 to be the set of all (a, b) ∈ ℝ2

>0 satisfying ξℓ1,ℓ2− < b/a < ξℓ1,ℓ2+ .
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More generally, for any primitive noncolinear m1,m2 ∈ ℤ2, we define the dense region of
S(Dℓ1,ℓ2

m1,m2)min to be the preimage of the dense region of S(Dν(m1)ℓ1,ν(m2)ℓ2
e1,e2 )min under the

map ϕ : ℝ2 → ℝ2 sending mi to ei for i = 1, 2.
According to [GP10, Thm. 5], those primitive (a, b) ∈ ℤ2

≥1 such that the ray
ℝ≥0 · (a, b) appears in the scattering pattern of S(Dℓ1,ℓ2

e1,e2)min and lies outside of the
dense region are precisely of the form T2(1, 0), T1(T2(1, 0)), T2(T1(T2(1, 0))), . . . and
T1(0, 1), T2(T1(0, 1)), T1(T2(T1(0, 1))), . . . , where Ti := T ℓ1,ℓ2

i : ℤ2 → ℤ2 for i = 1, 2 are
involutive symmetries of the scattering diagram S(Dℓ1,ℓ2

e1,e2)min, given by

T ℓ1,ℓ2
1 (a, b) = (ℓ1b− a, b) and T ℓ1,ℓ2

2 (a, b) = (a, ℓ2a− b).

The geometric origin of these symmetries is explained in [GP10, §5] via Theorem 5.2.5,
by exhibiting symmetries of the corresponding Gromov–Witten invariants induced by
certain birational transformations. In particular, these form two discrete slope sequences
which converge to ξℓ1,ℓ2+ and ξℓ1,ℓ2− respectively. It follows by Corollary 6.1.5 that, for each
primitive noncolinear m1,m2 ∈ ℤ2 and ℓ1, ℓ2 ∈ ℤ≥1 with ℓ1ℓ2 > 4, the set of outgoing
walls in S(Dℓ1,ℓ2

m1,m2)min which lie outside of the dense region form two sequences which
converge to the two boundary rays of the dense region. For brevity, we will refer to these
rays lying outside of the dense region as the discrete rays of S(Dℓ1,ℓ2

m1,m2)min.
Meanwhile, it is conjectured in loc. cit. that every rational slope in the dense region

appears in the scattering pattern. In the special case ℓ1 = ℓ2, Gross-Pandharipande
proved the above conjecture by exploiting a deep connection with quiver representation
theory due to Reineke.

Theorem 6.2.1 ([GP10, §4.7]). For all ℓ ∈ ℤ≥3 and all primitive (a, b) ∈ ℤ2
≥1, we have

Coef
S(Dℓ,ℓ

e1,e2
)min

(z(a,b))|t=1 ̸= 0.

Strictly speaking, [GP10, §4.7] only proves Coef
S(Dℓ,ℓ

e1,e2
)min

(zκ(a,b))|t=1 ≠ 0 for some
κ ∈ ℤ≥1, but an inspection of their argument shows that we can take κ = 1. For the
reader’s convenience we briefly summarize the argument, which illustrates one mechanism
for scattering positivity results.

Proof sketch of Theorem 6.2.1. Reineke’s theorem [Rei10, Thm. 2.1] states that for any
primitive (a, b) ∈ ℤ2

≥1 we have

(
𝕗 ℓ,ℓe1,e2(a, b)

)a/ℓ
= 1 +

∞∑
κ=1

χ
(
M(1,0),B

ℓ (κa, κb)
)
tκ(a+b)zκ(a,b), (6.2.1)

and in particular

Coef
S(Dℓ,ℓ

e1,e2
)min

(z(a,b))|t=1 =
ℓ
a χ

(
M(1,0),B

ℓ (a, b)
)
,

where M(1,0),B
ℓ (a, b) denotes the moduli space of (1, 0)-stable back-framed representations

of the ℓ-Kronecker quiver • •... with dimension vector (a, b). Concretely, an element
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of M(1,0),B
ℓ (a, b) is a representation ρ = (V,W, τ1, . . . , τℓ) together with a back framing

L, meaning:

• V and W are complex vector spaces of dimensions a and b respectively

• τ1, . . . , τℓ : V →W are linear maps

• L is a one dimensional subspace19 of V

• every subrepresentation ρ′ of ρ satisfies µ(1,0)(ρ′) ≤ ρ(1,0)(ρ), where µ(1,0)(ρ) := a
a+b

is the slope

• every subrepresentation ρ′ of ρ containing L satisfies µ(ρ′) < µ(ρ).

According to [KW95; Rei03], M(1,0),B
ℓ (a, b) is a nonsingular irreducible complex

projective variety with vanishing odd cohomology, and hence its Euler characteristic is
nonzero if and only if it is nonempty. Furthermore, by the argument in [GP10, Prop.
4.14], M(1,0),B

ℓ (a, b) is nonempty if and only if the analogous moduli space M(1,0)
ℓ (a, b) of

unframed semistable quiver representations is nonempty. Using the Harder–Narasimhan
filtration from [Rei03], one can show that we have M(1,0)

ℓ (a, b) ̸= ∅ if and only if
a2+b2−ℓab ≤ 1 (see [GP10, Prop. 4.15]). Finally, observe that a2+b2−ℓab = ℓa2Rℓ,ℓ(b/a),
and we have Rℓ,ℓ(b/a) < 0 if and only if (a, b) lies in the dense region. We conclude that
χ
(
M(1,0),B

ℓ (a, b)
)

is a positive integer whenever (a, b) lies in the dense region.

Going beyond the case ℓ1 = ℓ2, the following remarkable positivity phenomenon was
discovered by Gross–Hacking–Keel–Kontsevich is the course of constructing canonical
bases for cluster algebras.

Theorem 6.2.2 ([Gro+18, Prop. C.13]). For all ℓ1, ℓ2 ∈ ℤ≥1 and primitive (a, b) ∈ ℤ2,
we can write

𝕗 ℓ1,ℓ2e1,e2(a, b) =

∞∏
κ=1

(
1 + tκ(a+b)zκ(a,b)

)cκ
,

where cκ ∈ ℤ≥0 for all κ ∈ ℤ≥1.

By combining this positivity result with the scattering diagram deformation tech-
niques from [GPS10, §1.4] and an inductive argument, Gräfnitz–Luo recently extended
Theorem 6.2.1 to the case ℓ1 ̸= ℓ2.

Theorem 6.2.3 ([GL23, Thm. 1]). For all ℓ1, ℓ2 ∈ ℤ≥1 with ℓ1ℓ2 > 4 and all primitive
(a, b) ∈ ℤ2

≥1 lying in the dense region, we have Coef
S(Dℓ1,ℓ2

e1,e2
)min

(z(a,b))|t=1 ̸= 0.
19There is also a closely analogous statement if we work instead with front framings, in which case L

is a one dimensional subspace of W .
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Remark 6.2.4. Reineke–Weist have generalized (6.2.1) to [RW13, Thm. 6.1], which
relates the curve counts in Theorem 6.2.3 to the representation theory of the complete
bipartite quiver with ℓ1 vertices of one color and ℓ2 vertices of another color (see also
[GL23, §1.5]). ♢

Combining Theorem 6.2.3 with the change of lattice trick as in Corollary 6.1.6 gives:

Corollary 6.2.5. For any primitive noncolinear m1,m2 ∈ ℤ2, we have
Coef

S(Dℓ1,ℓ2
m1,m2

)min
(zm)|t=1 ̸= 0 whenever m = am1 + bm2 for some a, b ∈ ℤ≥1 such that

(a, b) lies in the dense region of S(Dν(m1)ℓ1,ν(m2)ℓ2
e1,e2 )min, i.e. whenever ξν(m1)ℓ1,ν(m2)ℓ2

− <

b/a < ξ
ν(m1)ℓ1,ν(m2)ℓ2
+ .

Here as before we put ν(mi) = ind (Annℤ2(mi) ⊂ Annℕ′(mi)), with ℕ′ the dual lattice of
𝕄′ := ⟨m1,m2⟩ ⊂ 𝕄 = ℤ2.

6.3 Well-placed curves from basic scattering diagrams

Now suppose that (X,N ) is a uninodal Looijenga pair with a toric model T having data
m1, . . . ,mJ and ℓ1, . . . , ℓJ as in Notation 4.1.2, and recall that the function WX sets up a
bijection from ℤ2

≥0/ ∼ to ℤ2. Let us further restrict to the case J = 2, and consider the
sublattice ⟨m1,m2⟩ ⊂ ℤ2 spanned by m1,m2. Observe that the results from §6.2 together
with Corollary 6.1.7 give a complete description of those coprime p, q ∈ ℤ≥1 for which
the count NX,N (p, q) of well-placed curves is nonzero (and hence a positive integer).

Corollary 6.3.1. Let (X,N ) be a uninodal Looijenga pair with a toric model T having
J = 2. For any coprime p, q ∈ ℤ≥1, we have NX,N (p, q) = 0 unless WX(p, q) ∈ ⟨m1,m2⟩.
For WX(p, q) ∈ ⟨m1,m2⟩, we have NX,N (p, q) ̸= 0 if and only of one if the following
holds:

• WX(p, q) is a discrete ray of S(DT )min

• WX(p, q) lies in the dense region of S(DT )min.

Of particular interest is the case when X is a rigid del Pezzo surface and T = TX is the
corresponding toric model from §4.3. In this situation, recall that the ellipsoid embedding
function cX contains an infinite staircase such that the x-values of the outer corners
accumulate at a point aXacc ∈ ℝ>1. The next lemma shows that, under the bijection
WX , the outer corners precisely match up with the discrete part of the corresponding
scattering diagram, while those p/q beyond the accumulation point correspond to the
dense region.

Lemma 6.3.2. Let X be a rigid del Pezzo surface with its toric model TX and associated
data m1, . . . ,mJ and ℓ1, . . . , ℓJ as in §4.3, and assume further that J = 2.20 For any
primitive (p, q) ∈ ℤ2

≥1, we have

20In other words, X = ℂℙ1 × ℂℙ1 or X = Bljℂℙ2 for j ∈ {0, 3, 4}.
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• ℝ≥0 ·WX(p, q) is a discrete ray of S(Dℓ1,ℓ2
m1,m2)min if and only if p/q or q/p is the

x-value of an outer corner of the infinite staircase cX |[1,aXacc]

• WX(p, q) lies in the dense region of S(Dℓ1,ℓ2
m1,m2)min if and only if p/q or q/p lies in

(aXacc,∞).

Corollary 6.3.3. In the setting of Lemma 6.3.2, for a reduced fraction p/q ∈ (aXacc,∞)
we have NX,N (p, q) ̸= 0 if and only if WX(p, q) ∈ ⟨m1,m2⟩.

Inspecting Table 4.2.1, WX(p, q) ∈ ⟨m1,m2⟩ is equivalent to p+ q ≡ 0 mod 3 in the case
X = ℂℙ2, p + q ≡ 0 mod 2 in the case X = ℂℙ1 × ℂℙ1, and it is always satisfied for
X = Bljℂℙ2 with j ∈ {3, 4}.

Proofs of Theorem B and Theorem F. Theorem B and Theorem F(a) in the cases J = 2
(in particular for X = ℂℙ1 × ℂℙ1) follow immediately by combining Corollary 6.3.1 and
Lemma 6.3.2. The remaining cases of Theorem F were deduced from these in §3.

Remark 6.3.4. The above argument actually gives a precise description of SX for the
rigid del Pezzo surfaces with J = 2 strands (the case X = ℂℙ2 is already covered by
Theorem B). More precisely, for any reduced fraction p/q, we have:

• if X = ℂℙ1 × ℂℙ1 and p/q > aXacc, there is a (p, q)-well-placed curve in X if and
only if p+ q ≡ 0 mod 2

• if X = Bljℂℙ2 with j ∈ {3, 4} and p/q > aXacc, there is a (p, q)-well-placed curve in
X.

Furthermore, using the symmetry argument in §3, we have:

• if X is a blowup of ℂℙ2 at k ≥ 5 points which are either very general or lie in the
smooth locus of a fixed nodal cubic, then we have SX = [1,∞) ∩ℚ.

It should be also possible to give sharp descriptions in the J = 3 cases (i.e. X = Bljℂℙ2

for j = 1, 2) by extending the analysis in [GL23] to scattering diagrams with more than
two initial rays. Incidentally, we could also apply Theorem 5.2.3 in the reverse direction,
in order to deduce structural results for certain scattering diagrams with three or more
incoming rays via Theorem F. ♢

Example 6.3.5. Recall that in the case X = ℂℙ2 the accumulation point is aXacc =

τ4 = 7+3
√
5

2 . Using the fundamental bijection induced by the toric model from §4.3, each
reduced fraction p/q ≥ 2 corresponds to a ray

ℝ≥0 ·Wℂℙ2(p, q) = ℝ≥0 · (q, 5q − p) = ℝ≥0 · (1, 5− p/q).

In particular, for p/q approximating τ4, the corresponding ray approximates ℝ≥0 · (1, 5−
τ4) = ℝ≥0 · (2, 3− 3

√
5). Similarly, for p/q approximating 1/τ4, the corresponding ray

approximates ℝ≥0 · (−1, 2− τ4) = ℝ≥0 · (2, 3 + 3
√
5).

Meanwhile, the dense region of the corresponding scattering diagram S(D1,1
m1,m2)min is

the image of the cone spanned by (1, ξ3,3± ) under the linear map ψ : ℝ2 → ℝ2 sending e1
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to m1 = (1, 0) and e2 to m2 = (−1,−3), where ξ3,3± = 1
2(3±

√
5). Thus the dense region

of S(D1,1
m1,m2)min is the cone spanned by (1±

√
5, 9± 3

√
5), or equivalently by (2, 3± 3

√
5).

In other words, p/q ∈ (0, 1/τ4)∪ (τ4,∞) if and only if Wℂℙ2(p, q) lies in the dense region
of S(D1,1

m1,m2)min. ♢

Remark 6.3.6. Under the bijection WX , the transformations ΦX ,ΨX discussed in §3 are
closely related to the scattering symmetries T1, T2 considered in [GP10, §5]. In fact, the
change of lattice formula in Lemma 6.1.2 can be understood more geometrically in terms
of finite degree toric morphisms induced by passing to finite index sublattices for the
relevant fans. Using this perspective, it is possible to view the birational transformations
underlying T1, T2 as automorphisms of the universal cover of X ∖N , corresponding to
“twisted square roots” of ΦX ,ΨY in the sense of [KV24] (see e.g. [KV24, Ex. 1] for the
case X = ℂℙ2). We will elaborate on the symmetries of uninodal Looijenga pairs and
scattering diagrams in a followup paper. ♢
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