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This talk is intended to be an introduction to Fukaya categories and their applications
for graduate students with varying amounts of familiarity with symplectic topology. We will
present some of the key concepts in this rapidly developing field while ignoring most of the
grief-inducing technical details. Our main references are the excellent survey articles [Aur]
and [Smi], whose bibliographies cover all the results in this talk.

1 Some questions

Question: What are the Lagrangian submanifolds of (R2n, ωstd)?

• n=1: Any embedded S1 ⊂ R2 is Lagrangian.

• n=2: An orientable Lagrangian in R4 must be a torus. The non-orientable ones are
precisely those with χ ≡ 0 mod 4 and χ 6= 0.

• n=3: A prime Lagrangian three-manifold in R6 must be S1 × Σg. For any orientable
Y 3, Y 3#S1 × S2 embeds as a Lagrangian in R6. It is unknown which connected sums
of three manifolds embed as Lagrangians (for example connected sums of hyperbolic
three-manifolds).

Gromov proved that there are no exact Lagrangians in R2n (i.e. λstd = −
∑
yidxi restricts

to an exact one-form). This result has subsequently been generalized to a large class of
ambient symplectic manifolds.

After exact Lagrangians, the next best class of Lagrangians are the monotone Lagrangians,
meaning that the symplectic area and Maslov homomorphisms π2(R2n, L)→ R are positively
proportional. Up to Hamiltonian isotopy, we have:

• n=1: Two Lagrangians S1 ⊂ R2 are Hamiltonian isotopic if and only if they bound
the area same.

• n=2: There are at least two distinct monotone Lagrangian tori in R4, the so called
Clifford and Chekanov tori.

• n=3: Auroux ’14: there are infinitely many distinct monotone Lagrangian tori in R2n≥6.
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Remark 1.1 Every symplectic manifold is locally symplectomorphic to R2n, hence the La-
grangian classification problem is at least as hard as this one!

Another very important class of symplectic manifolds are cotangent bundles, which in-
herit canonical symplectic structures. Arnold’s famous conjecture is still open:

Conjecture 1.2 (Arnold) Every closed exact Lagrangian in T ∗M (M any smooth manifold)
is Hamiltonian isotopic to the 0-section.

Corollary 1.3 Two smooth manifolds are diffeomorphic if and only if their cotangent bun-
dles are symplectomorphic.

The current state of the art is that for any exact Lagrangian L ⊂ T ∗M , the restriction
π|L →M is a homotopy equivalence.

2 Algebraic formalism

• For Lagrangians L,L′ ⊂ (M,ω), we associate to them HF (L,L′), a Z-graded K-vector
space in the best cases (here K is our chosen ground field).

• HF categorifies the homological intersection number:∑
i

(−1)i dimHF i(L,L′) = ±[L] · [L′].

• HF (L,L′) is invariant under Hamiltonian isotopies of L and L′

• Floer: If 〈ω, π2(M,L)〉 = 0, HF ∗(L,L) ∼= H∗(L).

Definition 2.1 The Donaldson category Don(M,ω) has objects Lagrangians in (M,ω) and
Mor(L,L′) := HF (L,L′).

Remark 2.2 This category is useful, but lots of subtle chain level information has been
thrown away by passing to (co)homology.

There are also higher operations:

µk : CF (Lk−1, Lk)⊗ ...⊗ CF (L0, L1)→ CF (L0, Lk).

For intersection points p1 ∈ CF (L0, L1), ..., pk ∈ CF (Lk−1, Lk), by definition µk(pk, ..., p1) =∑
q∈L0∩Lk

nq, where n is the count of pseudoholomorphic (k+ 1)-gons with sides mapping to
L0, L1, ..., Lk respectively and vertices mapping to q, p1, p2, ..., pk respectively. Together these
higher operations satisfy the A∞ relations. This follows by Gromov’s compactness theorem
and studying various ones in which a pseudoholomorphic polygon can degenerate. The first
relation amounts to the fact that µ1 squares to zero, the second says that µ2 satisfies a
Leibnitz rule with respect to µ1, the third gives a precise sense in which µ2 fails to be an
associative product, and the higher relations give higher order analogs of non-associativity.
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Remark 2.3

• µ2 descends to a product

HF (L1, L2)⊗HF (L0, L1)→ HF (L0, L2).

In particular, HF (L,L) is a unital ring.

• µk≥3 does not descend to cohomology.

Since the µk satisfy the A∞ relations, we can make the following definition.

Definition 2.4 Let the Fukaya category Fuk(M,ω) be the A∞ category with objects La-
grangians in M and Mor(L,L′) := CF (L,L′), along with the higher operations µk : Mor(Lk−1, Lk)⊗
...⊗Mor(L0, L1)→ Mor(L0, Lk).

3 Exact sequences

3.1 Triangulated A∞ categories

Recall that for f : X → Y a map of topological spaces, we can form

Cone(f) = X × I ∪ Y/ ((p, 1) ∼ f(p)) ,

and there is an associated exact triangle

H∗(X) // H∗(Y )

ww
H∗(Cone(f))

±[1]

gg

For X, Y objects in an A∞ category A and f : X → Y a closed morphism, we can sometimes
complete f to a triangle

A
f // B

g��
C

h

[1]
__

such that we get natural long exact sequences with respect to any test object T :

... // H i hom(T,A)
f // H i hom(T,B) // H i hom(T,C) // H i+1 hom(T,A) // ...

In fact, there is a notion of C being a mapping cone for f : A → B and in this case the
triangle of morphisms f, g, h is called an exact triangle. We say that A is triangulated if
mapping cones always exist.
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Unfortunately, Fuk(M,ω) is typically not triangulated. Luckily, there’s a nice fix:

Fuk(M,ω) TwFuk(M,ω) DFuk(M,ω)

We first form the category TwFuk(M,ω), whose objects are twisted complexes. One can
think of a twisted complex as the A∞ version of a chain complex. We then pass to the co-
homology category (i.e. keep the same objects but declare the morphism space between any
two objects to be the cohomology of the corresponding chain complex) to form the derived
Fukaya category DFuk(M,ω). The derived Fukaya category is an honest category (as op-
posed to A∞). Note: there is sometimes one additional step involving splitting idempotents
which we are ignoring here for brevity.

Remark 3.1 One huge motivation to study DFuk (outside the scope of this talk) is that it
is half of homological mirror symmetry. Namely, HMS claims it should be equivalent to a
derived category of coherent sheaves on the mirror manifold of M .

3.2 Symplectic mapping class groups and Dehn twists

Consider the fibration π : Cn+1 → C which sends (z1, ..., zn+1) to
∑
z2j .

• A generic fiber (i.e. π−1(x), x 6= 0) is symplectomorphic to (T ∗Sn, ωcan).

• The monodromy around 0 ∈ C is a compactly supported symplectomorphism τ of
T ∗Sn, usually called a “Dehn twist” (well-defined up to symplectic isotopic), which
restricts to the antipodal map on Sn.

Fact: For n even, τ has order two as a smooth diffeomorphism (at least for n = 2, 6) but
infinite order as a symplectomorphism! Indeed, one can show that HF ∗(τm(T ∗p ), T ∗p′) grows
arbitarily with m (here T ∗p and T ∗p′ are two random cotangent fibers).

Remark 3.2 Given any Lagrangian sphere Sn ⊂ (M2n, ω), Sn has a “Weinstein neighbor-
hood” U ⊃ S which is symplectomorphic to a neighborhood of Sn in T ∗Sn. Hence one can
make sense of the “Dehn twist around Sn in M2n”.

Theorem 3.3 (Seidel) Given a Lagrangian sphere Sn ⊂ (M2n, ω) and L ∈ Fuk(M,ω) any
object, there is an exact triangle in TwFuk(M,ω) of the form

HF ∗(S, L)⊗ S ev // L

}}
τS(L)

[1]

gg

Note: the first term doesn’t make sense as a “geometric” Lagrangian, but such a formal sum
of shifted copies of S is perfectly allowed in TwFuk(M,ω)!

Corollary 3.4 For any test object T we get a long exact sequence of Floer homology groups:

HF ∗(S, L)⊗HF ∗(T, S)
µ2 // HF ∗(T, L) // HF ∗(T, τS(L))

[1] // ...
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Figure 1: Relating holomorphic strips after surgery to holomorphic triangles before surgery.

3.3 Lagrange surgery

Another important source of exact triangles comes from Lagrange surgery. Namely, suppose
L1, L2 are Lagrangians (not necessarily spheres!) intersecting transversely at exactly one
point. There is a well-defined way to resolve the interestion point to form a smooth La-
grangian L1#L2, called the Lagrange surgery of L1 and L2. This fits into an exact triangle
with L1 and L2 of the form

L2
p // L1

{{
L1#L2

[1]

cc

The content of this is roughly that holomorphic strips between L1#L2 and some test La-
grangian T correspond to holomorphic triangles between L1, L2, and T , as in Figure 1.

Remark 3.5 If L2 is a sphere, L1#L2 is Hamiltonian isotopic to τL2(L1) and we recover
Seidel’s exact triangle.

4 Generation and computations

In order to actually “compute” a Fukaya category, it’s useful to have a precise sense in which
a small collection of objects determine the entire category. Let A be an A∞ category.

Definition 4.1

• G1, ..., Gr ∈ Obj(A) generate A if (in TwA) every object of A is built from copies of
G1, ..., Gr (equivalently, every object in A is an iterated mapping cone of G1, ..., Gr).

• G1, ..., Gr split-generate A if every object of A is quasi-isomorphic to a direct summand
of a twisted complex built from G1, ..., Gr.

These notations are perhaps best illustrated with an example.
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Example 4.2 Consider the standard torus T2 with the standard Lagrangian circles α, β
which generate H1(T2). Taking iterating mapping cones of α and β, we can generate a
curve in possible isotopy class of simple closed curves in T2. For example, the resolution
β#α ' ταβ lies in the homology class [β] ± [α]. One might therefore guess that α and β
generate Fuk(T2).

However, let θ ∈ Ω1(T2 \ {pt}) satisfy dθ = ω and
∫
α
θ =

∫
β
θ = 0. Then one can check

that the integral of θ over any iterated mapping cone of α and β also vanishes. This means
that α and β only generate the subcategory of Fuk(T2) consisting of those Lagrangians which
are “balanced” with respect to θ.

Now let γ ⊂ T2 be the circle with slope −1/2. Note that γ intersects β in two points,
say q1 and q2. We can therefore consider the morphism T a1q1 + T a2q2 ∈ Hom(γ, β). Here
T is the formal Novikov variable usually required to make Floer homology well-defined. The
mapping cone of T a1q1+T a2q2 is the resolution of β∩γ and consists of two components, whose
Hamiltonian isotopy classes depend on which numbers a1 and a2 we pick. These components
appear by definition in the category split-generated by β and γ. Actually γ is in the category
generated by α and β, and one can check that in fact α and β split-generate Fuk(T2), i.e.
all Hamiltonian isotopy classes of simple closed curves can be obtained via this procedure.

We conlude the talk by stating a few big results.

Theorem 4.3 Every compact exact Lagrangians in T ∗X is isomorphic in Fuk(T ∗X) to the
0-section.

Consider the n-dimensional Milnor fiber An2 , i.e. the Stein manifold obtained by plumbing
together two copies of T ∗Sn. Let L1 and L2 be the two corresponding 0-sections.

Theorem 4.4 Every exact Lagrangian with zero Maslov class in An≥32 is in the subcategory
generated by L1 and L2.

Corollary 4.5 Every exact Lagrangian in An2 with zero Maslov class is a homology sphere.
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