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1 Introduction

Review: So far we’ve been considering the question of which manifolds admit positive scalar
curvature (p.s.c.) metrics. On the one hand, we’ve mentioned that there are obstructions
to admitting p.s.c. metrics, for example coming from the index theory of dirac operators for
spin manifolds. On the other hand, we saw last time that the condition of admitting a p.s.c.
metric is preserved under surgeries of codimension ≥ 3, and this allowed us to conclude that
lots of manifolds admit p.s.c. metrics. We now want to consider the question at one meta
level higher, namely “what is the topology of the space of p.s.c. metrics?”.

Actually, this topology can be quite complicated in general, as the following theorem illus-
trates. In what follows, let R,R+,R− denote the space of metrics with any scalar curvature,
(strictly) positive scalar curvature, and (strictly) negative scalar curvature respectively.

Theorem 1.1 [LM] Let X be a closed spin manifold of dimension n with R+(X) 6= ∅.
Then

• π0(R+(X)) 6= ∅ if n ≡ 0, 1 (mod 8)

• π1(R+(X)) 6= ∅ if n ≡ 0,−1 (mod 8)

• π0(R+(X)) is infinite if n = 4k − 1 ≥ 7 for some k ∈ N

• π0(R+(S7)/Diff(S7)) is infinite

In this talk we’ll consider the related but much easier question: “what is the topology of
R−(M) for a closed manifold M?”

Remark 1.2 By the Kazdan-Warner trichotomy, we know that R−(M) is always non-
empty.

Here is our main result [Loh]:

Theorem 1.3 (Lohkamp) For M a closed manifold of dimension n ≥ 3, πi(R−(M)) = 0
for i ≥ 0.
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Using general results on infinite dimensional manifolds, we get

Corollary 1.4 (Palais-Whitehead) [Pal] R−(M) is contractible.

Remark 1.5 Here we are endowing R−(M) with the C∞ topology. Loosely speaking, two
metrics are close if, which we write down their expressions in local coordinates, their deriva-
tives of all orders are close. There is more or less a unique reasonable way to formalize this
when M is compact. However, we won’t be using any subtle properties of the C∞ topology
here.

2 The Yamabe Problem

We now embark on a brief tangent to discus the Yamabe problem.

Remark 2.1 The Yamabe problem has a long and interesting history, which we won’t discuss
here.

Let Diff+(M) act on C∞(M) by precomposition, giving rise to the semi-direct product
C∞(M) o Diff+(M). Recall the uniformization theorem (see [RS] for a brief summary)

Theorem 2.2 (Uniformization) For M an oriented connected closed 2-manifold, C∞(M)o
Diff+(M) acts transitively on R(M).

Corollary 2.3 Every metric on M is conformally equivalent to a metric of constant (sec-
tional) curvature.

Remark 2.4 The obvious generalization to higher dimensions is too much to ask for, since
the full curvature tensor has too many degrees of freedom. However, we do have:

Theorem 2.5 (Yamabe Problem)(Aubin,Schoen,Trudinger,Yamabe) [LP] For (M, g) a closed
Riemannian manifold of dimension n ≥ 3, there exists a conformally equivalent metric of
constant scalar curvature.

Why is this relevant to our problem? First observe that the condition πi(R−(M)) = 0
means that any map f : Si → R−(M) has an extension to the ball F : Bi+1 → R−(M).

Si� _

��

f //R−(M)

Bi+1

F
77nnnnnn

Our strategy will be as follows:

2



• Step 1: Extend f to a map F1 : Bi+1 → R(M) using convexity of R(M).

Si� _

��

f //R(M)

Bi+1

F1

77oooooo

• Step 2: By connect-summing (in a continuous way) with a copy of Sn with highly
negative scalar curvature, alter F1 to an extension of f of the form F2 : Bi+1 →
R−av(M). Here R−av(M) denotes the space of metrics g on M such that the average
scalar curvature ∫

M

RgdVg < 0,

where Rg denotes the scalar curvature associated to g.

Si� _

��

f //R−av(M)

Bi+1

F2

77nnnnnn

• Step 3: Conformally rescale the metrics corresponding to F2 with appropriate func-
tions on M , to obtain a new map F such that the resulting metrics have honest negative
scalar curvature.

Si� _

��

f //R−(M)

Bi+1

F
77nnnnnn

Remark 2.6 It is this last step that shares close connections with the Yamabe problem. In
order to find an appropriate scaling function to take us from average negative scalar curvature
to actual negative scalar curvature, we’ll need to analyze a similiar PDE to that of the Yamabe
problem.

3 Warm Up

As a warm up, we prove the following:

Proposition 3.1 [RS] R+(S2) is contractible.

3



Proof By uniformization, C∞(S2) o Diff+(S2) acts transitively on R(S2). A little thought
shows that stabilizer of g0 (the standard round metric on S2) can be identified with the con-
formal equivalences of (S2, g0), i.e. PSL(2,C) (by a well-known result in complex analysis).
Thus by the orbit-stabilizer theorem, we have(

C∞(S2) o Diff+(S2)
)
/PSL(2,C) ∼= R(S2).

Remark 3.2 Note that Diff+(S2) preserves R+(S2) (or R−(S2)) since pulling back a metric
under a diffeomorphism just “shuffles the curvature around”.

Remark 3.3 This shows that Diff+(S2)/PSL(2,C) is contractible, since C∞(S2) and R(S2)
are.

Now we will need to understand how scalar curvature changes under conformal trans-

formations g  u
4

n−2 g, where u ∈ C∞(M) and the exponent 4
n−2

is only to simplify later
formulas. The formula for n ≥ 3 is:

R
u

4
n−2 g

(M) = u−
n+2
n−2

(
−4(n− 1)

n− 2
∆gu+Rg(M)u

)
(1)

Recall that ∆gu = divg∇gu is the Laplace-Beltrami operator, where divgX for a vector
field X is defined by

d(ιXdVg) = divgXdVg.

In our case, for n = 2 and g = g0, we have a simpler formula:

Reug0 = −e−u∆g0(u) +Rg0(S
2)e−u

= −e−u∆g0(u) + 2e−u.

Let C∞p (S2) denote the space of functions u ∈ C∞(M) such that Reug0 > 0.
Claim: C∞p (S2) is star-shaped about the zero function.

Claim Proof: For Reug0 > 0, we have (for 0 ≤ t ≤ 1)

Retug0 = −etu∆g0(tu) + 2e−tu

= e−tu(−t∆g0(u) + 2)

= e−tu(t(euReug0 − 2) + 2)

= e−tu(teuReug0 + 2(1− t))
> 0

Thus C∞p (S2) is contractible. Now we have an identification(
C∞p (S2) ·Diff+(S2)

)
/PSL(2,C) ∼= R+(S2).

Then since C∞p (S2) and Diff+(S2)/PSL(2,C) are contractible, so is R+(S2).
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4 Main Proof

We now sketch a proof of Theorem 1.3.

Proof (Theorem 1.3) Let f : Si → R−(M) be given. We goal is to find an extension

Si� _

��

f //R−(M)

Bi+1
6

F
77oooooo

,

where it will convenient to use the ball Bi+1
6 centered at the origin of radius 6.

• Step 1:

Thinking of Bi+1
6 as (Si × [0, 6]) /(Si × {0}), we begin by defining F1

Si� _

��

f //R−(M)� _

��
Bi+1

6

F1 //R(M)

by the formula

F1(x, t) :=

{
(1− t)g0 + tf(x) on (Si × [0, 1]) /Si × {0}
f(x) on Si × [1, 6]

for g0 a fixed metric on M .

• Step 2:

First we’ll need a controlled way of connect-summing with a sphere of negative scalar
curvature. We’ll then use this procedure to alter F1 to F2 with

Si� _

��

f //R−(M)� _

��
Bi+1

6

F2 //R−av(M)

.

Consider the following data:

– gM a fixed metric on M with injectivity radius inj(M, gM) > 5

– g̃Sn any metric on Sn with inj(Sn, g̃Sn) > 5

– g any metric on M

– gneg a fixed negative scalar curvature metric on Sn
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– ΦM : (TpM, gM)→ (Rn, geuc) a fixed linear isometry

– ΦSn : (Tp′S
n, gM)→ (Rn, geuc) a fixed linear isometry

Let fλ : Bλ2gM
5 \ {p} → (0, 5)× Sn−1 be defined by

fλ(z) := P (λ2(ΦM ◦ (expλ
2gM
p )−1(z)))

for

P (z) := (|z|, z/|z|).

That is, we have a composition

(M,λ2gM)

(
exp

λ2gM
p

)−1

// (TpM,λ2gM(p))
ΦM // (Rn, geuc)

P // ((0, 5)× Sn−1, gR × gSn−1)

Let h ∈ C∞(R) be a function with h ≡ 1 on (−∞, 3] and h ≡ 0 on [4,∞). Let
Gλ := f ∗λ(gR + gSn−1). Now define a metric g1(λ, g) on M by

g1(λ, g) := h(dλ2gM (p, idM))Gλ + (1− h(dλ2gM (p, idM)))λ2g.

Define a metric g2(µ, gneg) on Sn similarly, using g̃Sn and ΦSn instead of gM and ΦM .
Since we’ve standardized the metrics in balls, we can perform the connect-sum

(M, g1(λ, g))#(Sn, g2(µ, gneg)) (M#Sn, g#(λ, µ, g)).

Using a continuous family of diffeomorphisms

F (λ, µ) : M →M#Sn

with F (λ, µ) ≡ id on M \Bλ2gM
5 (p), we get metrics G(g, λ, µ) on M defined by

G(g, λ, µ) := F (λ, µ)∗g#(λ, µ, g).

We now define

F2(λ0, µ0, µ1, x, t) :=


f(x) on Si × [4, 6]
((4− t)λ2

0 + (1− [4− t])) f(x) on Si × [3, 4]
(3− t)G(f(x), λ0, µ0) + (1− [3− t])λ2

0f(x) on Si × [2, 3]
G(f(x), λ0, (2− t)µ1 + (1− (2− t))µ0) on Si × [1, 2]
G(F1(x, t), λ0, µ1) on (Si × [0, 1]) /Si × {0}
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Proposition 4.1 There exist λ0, µ0, µ1 such that F2(x, t) := F2(λ0, µ0, µ1, x, t) is a
continuous extension of f with

Rav(M,F2(x, t)) < 0

for all x, t.

• Step 3: Now we would like a (continuous) way of going from R−av(M) to R−(M).
Specifically, we’ll present a mechanism

R−av(M)→ R−(M)

g 7→ v(g)
4

n−2 g

(a conformal change). Recall formula (1) for conformal changes:

R
u

4
n−2 g

(M) = u−
n+2
n−2Lgu,

where

Lgu := −4(n− 1)

n− 2
∆gu+Rg(M)u

is the “conformal Laplacian”.

We will define v(g) as follows. We define the “Rayleigh quotient” by

λ1(g) := inf
u∈C∞(M),|u|L2(M,g)=1

∫
M

(
4(n− 1)

n− 2
|∇gu|2 +Rgu

2

)
dVg

= inf
u∈C∞(M),|u|L2(M,g)=1

〈u, Lgu〉L2(M,g)

Proposition 4.2 There is a unique v(g) ∈ C∞(M) with

– Lgv(g) = λ1(g)v(g)

– v(g) > 0 and max v(g) = 1

Remark 4.3 Setting u ≡ 1, we get∫
M

(
4(n− 1)

n− 2
|∇gu|2 +Rgu

2

)
dVg =

∫
M

RgdVg,

so g ∈ R−av(M) implies that λ1(g) < 0.
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Then for v(g)
4

n−2 g, we have

R
v(g)

4
n−2 g

= v(g)−
n+2
n−2Lgv(g)

= v(g)−
n+2
n−2λ1(g)v(g)

< 0,

and hence v(g)
4

n−2 g ∈ R−(M) as desired.

Finally, set

F (x, t) =


f(x) on Si × [5, 6]

[(5− t)v(f(x)) + (1− (5− t))]
4

n−2 f(x) on Si × [4, 5]

v(F2(x, t))
4

n−2F2(x, t) on (Si × [0, 4]) /Si × {0}

Using (1), one can easily prove

Proposition 4.4 F is a continuous extension of f with image in R−(M).

˙

Remark 4.5 Using similar arguments, one can show that the space R−1(M) of metrics on
M with constant scalar curvature −1 is also contractible.
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