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1 Introduction

In [Oh1], Oh defines Lagrangian Floer cohomology for any monotone Lagrangian L ⊂ P in
a symplectic manifold (P, ω), under a certain topological assumption. More precisely, for
any Hamiltonian isotopy φ = {φt}0≤t≤1 of P such that φ1(L) intersects L transversally, he
defines a relatively graded Z2-module I∗(L, φ : P ) which is shown to be independent of the
isotopy φ. This extends the definition of Floer’s celebrated homology to many cases with
nontrivial π2(P,L).

More precisely, recall that for any Lagrangian L ⊂ P in a symplectic manifold (P, ω) we
have two homomorphisms

Iω : π2(P,L)→ R
Iµ,L : π2(P,L)→ Z.

If f : (D2, ∂D2)→ (P,L) is a smooth map of pairs, Iω([f ]) is defined by

Iω([f ]) =

∫
D2

f ∗ω.
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To define Iµ,L, we first pick a symplectic trivialization of f ∗TP and use this to identify f |∂D2

with a map f∂ : ∂D2 → Λ(Cn), where Λ(Cn) is the space of Langrangian linear subspaces of
Cn. Letting µ ∈ H1(Λ(Cn),Z) denote the Maslov cycle, we define Iµ,L by

Iµ,L([f ]) = µ([f∂]).

We say that L ⊂ P is monotone if

Iµ,L = λIω

for some λ > 0. Let ΣL denote the positive generator of the subgroup Iµ,L(π2(P,L)) ⊂ Z.
We define

I(L, φ : P ) = {x ∈ φ1(L) ∩ L | [t 7→ φ−1
t (x)] = 0 ∈ π1(P,L)}

and

C ∗ = Z2〈I(L, φ : P )〉.

The relevant theorem from [Oh1] can now be stated as follows.

Theorem 1.1 Let L be a monotone Lagrangian submanifold in (P, ω) and φ = {φt}0≤t≤1

be a Hamiltonian isotopy of P such that L intersects φ1(L) transversally. Suppose ΣL ≥ 3.
Then there exists a homomorphism

δ : C ∗ → C ∗

with δ ◦ δ = 0 such that the quotients

I∗(L, φ : P ) := Ker δ/Im δ

are isomorphic as relatively Z/Σ-graded Z/2 modules for any Hamiltonian isoptopy φ, pro-
vided L intersects φ1(L) transversally.

We denote the common module by I∗(L : P ).

Remark 1.2 It is important to note here that, when well-defined, I∗(L, φ : P ) ultimately
a Hamiltonian isotopy invariant of the Lagrangian L sitting inside the symplectic mani-
fold (P, ω), even though its construction a priori depends on the isotopy φ and a choice of
appropriate almost complex structure J on P .

Now let us consider the Lagrangian RP n ⊂ CP n, where CP n is given the standard Kahler
symplectic form ω coming from the Fubini-Study metric and RP n is the fixed point set of
the anti-holomorphic involutive isometry σ given in homogeneous coordinates by

σ([z0 : z1 : ... : zn]) = [z0 : z1 : ... : zn].

As we show in Section 3, RP n here is actually a monotone Lagrangian, and we indeed have
ΣRPn = n + 1 ≥ 3 for n ≥ 2. Thus I∗(RP n : CP n) is well-defined for n ≥ 2 1 and our goal
in these notes is to prove the following theorem, following [Oh2].

1Actually I∗(RP 1 : CP 1) is also well-defined and gives the expected outcome, as Oh shows by a more
careful analysis of the disk bubbling that can occur.
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Theorem 1.3 Assume n ≥ 2, and let RP n and (CP n, ω) be as above. Then

I∗(RP n : CP n) ∼= H∗(RP n,Z/2) ∼= (Z/2)n+1

as relatively Z/(n+ 1)-graded modules.

One immediate corollary is a version of the Arnold conjecture:

Corollary 1.4 For any Hamiltonian isotopy φ = {φt}0≤t≤1 of CP n such that RP n intersects
φ1(RP n) transversally, we have

#(RP n ∩ φ1(RP n)) ≥ n+ 1 = dimZ/2H
∗(RP n,Z/2).

In order to prove Theorem 1.3, we should first give some more details about the definition
of δ : C ∗ → C ∗. Roughly speaking, δ counts holomorphic strips with Lagrangian boundary
conditions between intersection points in L ∩ φ1(L). For this we pick an almost complex
structure J on P which is compatible with ω (i.e. ω(·, J ·) defines a Riemannian metric on
P ). It can be shown that for “generic” such J , the relevant moduli spaces of holomorphic
strips form manifolds, whose dimensions are controlled by the so-called “Maslov-Viterbo
index”. For sufficiently generic J , Oh uses a version of Gromov’s Compactness Theorem and
the assumption ΣL ≥ 3 to show that δ is well-defined (i.e. the relevant count is finite) and
δ ◦ δ = 0.

To make this rigorous, we need to make some definitions. Let x, y ∈ I(L, φ : P ).

Definition 1.5

1. Θ := {a+ bi ∈ C | 0 ≤ b ≤ 1}

2. Ωφ := {z : I → P | z(0) ∈ L, z(1) ∈ φ1(L), [t 7→ φ−1
t z(t)] = 0 ∈ π1(P,L)}

3. Pφ := {u ∈ L2
k(Θ, P ) | u(τ, 0) ⊂ L, u(τ, 1) ⊂ φ1(L), u(τ, ·) ∈ Ωφ ∀ τ}

4. MJ,φ := {u ∈Pφ | ∂Ju := ∂u
∂τ

+ J ∂u
∂t

= 0,
∫

Θ

∣∣∂u
∂τ

∣∣2 dtdτ <∞}
5. MJ,φ(x, y) := {u ∈MJ,φ | limτ→∞ u = x, limτ→−∞ u = y}

6. M̂J,φ(x, y) :=MJ,φ(x, y)/R.

7. Lu := {ξ ∈ L2
k−1(Θ, TP ) | ξ(θ) ∈ Tu(θ)P}.

Here L forms a Banach bundle over Pφ, and ∂J gives a section Pφ → L . We denote by

Eu = D∂J(u) : TuPφ → Lu

the covariant linearization of ∂J at u.
Now we are ready to state under what conditions we can define I∗(L, φ : P ) = Kerδ/Imδ.

In fact, the complex C ∗ will depend on the choice of a “nice” compatible almost complex
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structure J , although it can be shown that the cohomology I∗(L, φ : P ) is independent of
the choice of J . Indeed, for a given J , the chain complex δ : C ∗ → C ∗ can be defined by

δx :=
∑

y∈I(L,φ:P )

y〈y, δx〉,

〈y, δx〉 :=
∑

y∈I(L,φ,P )

#
(
M̂J,φ(y, x)

)
mod 2,

where #
(
M̂J,φ(x, y)

)
denotes the number of zero-dimensional components of M̂J,φ(x, y),

under the conditions:

1. (φ, J) is regular, i.e. CokerEu = 0 for all u ∈MJ,φ(x, y) and for all x, y ∈ I(L, φ : P )

2. #
(
M̂J,φ(x, y)

)
is finite for all x, y ∈ I(L, φ : P )

3.
∑

y∈I(L,φ)〈x, δy〉〈y, δz〉 = 0 ∈ Z/2 for any x, z ∈ I(L, φ : P )

We future ease, we’ll call a pair (φ, J) satisfying these conditions admissible. Evidently
any admissible pair (φ, J) gives rise to a chain complex (C ∗, δ) with cohomology equal to
I∗(L : P ).

We can now break up the proof of Theorem 1.3 as follows. In Section 2 we show how to
pick a convenient Hamiltonian isotopy φ satisfying |I(L, φ : P )| = |L ∩ φ1(L)| = n + 1 by
exploiting the automorphism group of CP n. We then show that the standard integrable J
on CP n indeed satisfies the above conditions, using:

Proposition 1.6 (Regularity) Let L = RP n ⊂ CP n be the standard one and (J, φ) as above.
Then the pair (φ, J) is regular, i.e. the linearization Eu is surjective for all u ∈MJ,φ.

Proposition 1.7 (Compactness) Under the above hypotheses, the zero-dimensional compo-

nent of M̂J,φ is compact and the one-dimensional component of M̂J,φ is compact up to the
splitting of two-trajectories.

Proposition 1.7 implies that δ ◦ δ = 0 in the usual way by noticing that compact one-
dimensional manifolds have an even number of boundary points and using the standard
gluing technique for broken trajectories.

Finally, we show:

Proposition 1.8 (Vanishing) Under the same hypotheses, δ ≡ 0.

In summary, given the construction of Langrangian Floer Cohomology for monotone
Lagrangians with Σ ≥ 3 as stated in Theorem 1.1, the computation of I∗(RP n : CP n)
involves the following steps:

• Show that RP n ⊂ CP n is a monotone Lagrangian with Σ ≥ 3
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• Choose a convenient Hamiltonian isotopy φ and show that it has satisfies |I(L, φ :
P )| = |L ∩ φ1(L)| = n+ 1

• Choose an almost complex structure J , namely the standard integrable one, and show
that the pair (φ, J) is admissible, i.e. (φ, J) is regular and we have appropriate com-
pactness statements to conclude that δ is well-defined and δ ◦ δ = 0

• Show that the boundary operator δ is trivial.

In the following sections, we give a rough sketch of these steps. We refer the reader
to [Oh2] for more of the details.

2 Choosing a Convenient Isotopy φ

Recall that G = PU(n + 1) is the group of biholomorphic isometries of CP n, and has a
maximal torus T n ⊂ G. Actually the action of G is Hamiltonian, with moment map of the
action of T n, Φ : CP n → t∗, given by

fξ(x) := 〈Φ(x), ξ〉 =
xtξx

2πi||x||2

where x = (x0, x1, ..., xn), ||x||2 = x0x0 + ...+ xnxn and ξ ∈ t = the Lie algebra of T n. Using
this one easily checks that

σ∗fξ = fξ,

where σ is the anti-holomorphic involutive isometry as before. From this we have

σ∗ξCPn = −ξCPn ,

where ξCPn is the vector field on CP n associated to ξ by the action of T n. Letting ψt denote
the flow of ξCPn , we then have

σψtσ = ψ−1
t .

Now since ξCPn is orthogonal to RP n, we have

RP n ∩ ψt(RP n) = Crit(fξ)

for t 6= 0 sufficiently small. One can check that

#(Critfξ) = n+ 1.

We now choose ξ ∈ t such the corresponding flow ψt is periodic with period one, and then
define φt = ψt/2N for N sufficiently large. This gives an flow φt such that
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• φ2N

1 = id

• #(L ∩ φt(L)) = n+ 1

• σφtσ = φ−1
t

• φt is a biholomorphic isometry for all t.

Remark 2.1 We note that π1(CP n,RP n) = 0, and therefore we need worry about whether
paths created in π1(P,L) are trivial.

3 Monotonicity and Σ ≥ 3

In this section we prove that the standard RP n ⊂ CP n is a monotone Lagrangian. Firstly,
we claim that P = CP n is a monotone symplectic manifold, i.e. there exists some λ > 0
such that for any u : S2 → P we have

c1(u∗TCP n)[S2] = α

∫
S2

u∗ω.

Indeed, π2(P ) ∼= Z is generated by CP 1 ⊂ CP n, i.e. a J-holomorphic map

u : S2 → CP n,

which therefore has
∫
S2 u

∗ω equal to the symplectic area of u, which is positive. On the
other hand, recall that we have the characterization

TCP n = HomC(γ, γ⊥),

where γ is the tautological line bundle over CP n. Then writing 1 for the trivial line bundle,
we have

TCP n ⊕ 1 ∼= HomC(γ, γ⊥)⊕ HomC(γ, γ)
∼= HomC(γ,⊕n+11)
∼= γn+1.

Therefore

c1(TCP n) = (n+ 1)c1(γ),

and it follows by naturality of Chern classes that

c1(u∗TCP n)[S2] = n+ 1,

which is also positive.
Before proving that RP n is monotone, we record a useful lemma.
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Lemma 3.1 Let f, f ′ : (D2, ∂D2)→ (P,L) be smooth maps of pairs with

f |∂D2 = f ′|∂D2 .

Let u denote the corresponding map from S2 = D2 ∪D2
to P defined by gluing, i.e.

u(z) =

{
f(z) : z ∈ D2

f ′(z) : z ∈ D2
.

Then we have

µ(f)− µ(f ′) = 2c1(P, ω)[u].

Proof Indeed, since any symplectic vector bundle over D2 is trivial, we can view u∗(P, ω)
as being defined by an element [u∂] ∈ π1(Sp(2n)) ∼= Z. Then [u∂] ∈ Z gives c1(P, ω)[u], and
its image under the map

π1(Sp(2n))→ π1(Λ(Cn))

gives µ(f)− µ(f ′). But the above map can be identified with

×2 : Z→ Z.

Now we establish monotonicity using the following lemma:

Lemma 3.2 Let (P, ω) be a monotone symplectic manifold with monotonicity constant α >
0, and let σ : P → P be an anti-symplectic involution with nonempty fixed point set L = Fix
σ. Then L is a monotone Lagrangian.

Proof Let f : (D2, ∂D2)→ (P,L) be a smooth map of pairs, and let f ′(z) = σ ◦ f(z). Then
f |∂D2 = f ′|∂D2 and so we can glue f and f ′ as in Lemma 3.1 to get a map u : S2 → P . From
Lemma 3.1, we have

2µ(f) = µ(f)− µ(f ′) = 2c1(u),

i.e.

µ(f) = c1(u).

An easy calculation also shows that we have∫
S2

u∗ω = 2

∫
D2

f ∗ω

since σ is anti-symplectic. Thus we have

µ(f) = c1(u) = α[ω](u) = 2α[ω](f),

i.e.

Iµ,L([f ]) = 2αIω([f ]).

Remark 3.3 Note that from the formula µ(f) = c1(u) and our above computation it easily
follows that ΣRPn = n+ 1.
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4 Compactness

In this section our goal is to prove Proposition 1.7, assuming regularity of (φ, J). This
will follow from a form of Gromov’s Compactness Theorem. Roughly speaking, this says
that for any sequence ui ∈ MJ,φ(x, y) with constant Maslov-Viterbo index I and uniformly
bounded energy, there exists a subequence converging to some (u, v, w), where u is a broken

k-trajectory in M̂J,φ, v is a collection of finite energy J-holomorphic spheres, and w is
a collection of finite energy J-holomorphic disks. Moreover, we have the following index
formula:

I =
k∑
i=1

Index(ui) + 2
∑
j

c1(vj) +
∑
l

µ(wl).

Here Index(ui) denotes the Maslov-Viterbo index of ui, which can also be shown to be the
local dimension ofMJ,φ near ui, and therefore in particular is nonnegative. Moreover, since
the vj’s and wl’s are J-holomorphic, monotonicity implies that the second and third sums
above must also be nonnegative. But for nontrivial vj or wl we would then have

|2c1(vj)|, |µ(wl)| ≥ Σ ≥ 3.

This shows that for I = 1, 2 there can be no sphere or disk bubbles, hence the Proposition.

5 Triviality of the Boundary Operator

Next we prove that δ ≡ 0, again assuming regularity of (φ, J). By the definition of δ, it

suffices to show that the finite number #
(
M̂J,φ(x, y)

)
is always even. We will exhibit a

fixed point free involution on M̂J,φ(x, y) which associates u ∈ M̂J,φ(x, y) with

u = φ2l

1 u

for some 1 < l ≤ N − 1 (recall that φ2N

1 = id).
Using the relation σφ1σ = φ−1

1 , we have for any p ∈ L = Fix σ = RP n:

σφ2N−1

1 (p) = σφ2N−1

1 σ(p) =
(
φ2N−1

1

)−1

(p) = φ2N−1

1 (p),

hence φ2N−1

1 (p) ∈ L. Then since φ2N−1

1 (RP n) = RP n and φ2N−1

1 (φ1(RP n)) = φ1(RP n), it
follows that for u ∈MJ,φ(x, y) we have again φ2N−1

1 (u) ∈MJ,φ(x, y).

Now if φ2N−1

1 (u) 6≡ u, we set u := φ2N−1

1 (u) (one can show that u cannot be a translation
of u since φt is perpendicular to L). On the other hand, if φ2N−1

1 (u) ≡ u, we can repeat
the above, with N replaced by N − 1, to get an element φ2N−2

1 (u) ∈ MJ,φ(x, y). As before,

if φ2N−2

1 (u) 6≡ u, we set u := φ2N−2

1 (u), otherwise we repeat the process. By choosing N
sufficiently large from the beginning so that

φ2
1u 6≡ u
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for any such u, we can guarantee that this process eventually terminates. Moreover, it is
easy to check that the pairing u 7→ u indeed gives a well-defined fixed point free involution

on M̂J,φ(x, y).

6 Regularity of (φ, J)

Finally, we sketch a proof of Proposition 1.6, which we have been postponing until now. Let
u ∈MJ,φ(x, y). Recall that ∂J gives a section of the bundle

L →Pφ,

where

Lu = {ξ ∈ L2
k−1(Θ, TP ) | ξ(θ) ∈ Tu(θ)P}

Pφ = {u ∈ L2
k(Θ, P ) | u(τ, 0) ⊂ L, u(τ, 1) ⊂ φ1(L) ∀ τ}

Our goal is to show that the covariant linearization Eu = D∂J(u) : TuPφ → Lu at u is
surjective.

Let ξ ∈ TuPφ, and let us be a path in Pφ with u0 = u and (d/ds)|s=0us = ξ. Then we
have

Eu(ξ) = ∇s|s=0∂J(us).

Using the fact that ∇J = 0, a short computation shows that

Eu(ξ) = (∇τ + J∇t)ξ,

i.e. Eu looks like a covariant version of the ∂J operator.
Let (Eu)

∗ be the adjoint of Eu. Then to show that Coker(Eu) = 0, it will suffice to show
that η = Ker(Eu)

∗ implies that η = 0. Using the relation

〈ξ, (Eu)∗η〉2 = 〈Euξ, η〉2

and massaging the right hand side, one can prove the following characterization of the
cokernel:

CokerEu = {η ∈ L2
k−1(Θ, u∗TP ) | − ∇τη + J∇tη = 0, η(τ, 1) ∈ Tφ1(RP n), η(τ, 0) ∈ TRP n}.

Now we show how by reflecting u 2N−1 times we can get a (finite energy) J-holomorphic
map from the cylinder

C2N = (R× i[0, 2N ])/((a, 0) ∼ (a, 2N))

to P . Indeed, let

σ1 := φ1σφ
−1
1 ,

u1(τ, t) := σ1u(τ, 1− t).
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Note that since σ is anti-holomorphic, u1 is J-holomorphic, and one can show that

Fix φ1σφ
−1
1 = φ1(RP n)

u1(τ, 0) ∈ φ1(L)

u1(τ, 1) ∈ φ2
1(u(τ, 0)).

Similarly, let

σ2 := φ2
1σφ

−2
1

u2(τ, t) := σ2u1(τ, 1− t).

We can repeat this process, defining u3, u4, ..., and it is not hard to show using φ2N

1 = id that
u2N ≡ u, and we therefore get the promised J-holomorphic map

C2N → P.

We can now appeal to a standard removal of singularities theorem:

Theorem 6.1 (Removal of singularities) Let (P,w) be a symplectic manifold with compatible
almost complex structure J , and let u : D2 \ {0} → P be a J-holomorphic map such that∫
D2\{0} u

∗ω <∞. Then u extends to a J-holomorphic map on D2.

By the removal of singularities theorem and the fact that C2N is conformally equivalent to
CP 1 \ {0,∞}, we can extend our map C2N → P to a J-holomorphic map f : CP 1 → CP n.

Now by applying the same reflection process to our η (which we are trying to show is
identically 0), we get a section η of f ∗(TCP n) which is anti-holomorphic, which corresponds
to a holomorphic section of f ∗(T ∗CP n). Now the fact that η = 0 follows from the following
classical result:

Lemma 6.2 Let f : CP 1 → CP n be a non-constant holomorphic map with respect to the
standard integrable almost complex structures on CP 1 and CP n. Then there is no nontrivial
holmorphic section of f ∗(T ∗CP n).

Proof By Grothendieck’s splitting theorem for holomorphic vector bundles over CP 1, E :=
f ∗(T ∗CP n) splits as a direct sum of holomorphic line bundles

E = L1 ⊕ ...⊕ Ln.

Using the large symmetry group of CP n, it is not hard to show that each Li must admit a
nontrivial holomorphic section which is zero at a point. This means that c1(Li) > 0 for each
i, and therefore for each i we have

c1(L∗i ) = −c1(Li) < 0.

Since f ∗(T ∗CP n) ∼= E∗ ∼= L∗1 ⊕ ...⊕ L∗n, f ∗(T ∗CP n) cannot admit a nontrivial holomorphic
section.
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