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1 Introduction

In [Oh1], Oh defines Lagrangian Floer cohomology for any monotone Lagrangian L C P in
a symplectic manifold (P,w), under a certain topological assumption. More precisely, for
any Hamiltonian isotopy ¢ = {¢:}o<t<1 of P such that ¢;(L) intersects L transversally, he
defines a relatively graded Zs-module I*(L, ¢ : P) which is shown to be independent of the
isotopy ¢. This extends the definition of Floer’s celebrated homology to many cases with
nontrivial my(P, L).

More precisely, recall that for any Lagrangian L C P in a symplectic manifold (P,w) we
have two homomorphisms

I,:m(P,L) —» R
I,1:m(P, L) — Z.

If f:(D? 0D?) — (P, L) is a smooth map of pairs, I,([f]) is defined by

L) = [



To define I, 1, we first pick a symplectic trivialization of f*T'P and use this to identify f|0D?
with a map f : 9D* — A(C"), where A(C") is the space of Langrangian linear subspaces of
C". Letting u € H*(A(C™),Z) denote the Maslov cycle, we define I, ;, by

L ([f1) = n([fa)).
We say that L C P is monotone if
L, =M,

for some A > 0. Let X denote the positive generator of the subgroup 1, 1(m2(P, L)) C Z.
We define

I(L,p:P)={z e ¢ (L)NL| [t ¢ (x)] =0€m(P,L)}
and
C* =Zo(I(L,d: P)).
The relevant theorem from [Ohl] can now be stated as follows.

Theorem 1.1 Let L be a monotone Lagrangian submanifold in (P,w) and ¢ = {¢;}o<i<1
be a Hamiltonian isotopy of P such that L intersects ¢1(L) transversally. Suppose ¥p > 3.
Then there exists a homomorphism,
0: ¢ — €
with 0 0 0 = 0 such that the quotients
I"(L,¢: P):=Kerd/Im§

are isomorphic as relatively Z/%-graded 7Z./2 modules for any Hamiltonian isoptopy ¢, pro-
vided L intersects ¢1(L) transversally.

We denote the common module by I*(L : P).

Remark 1.2 [t is important to note here that, when well-defined, I*(L,¢ : P) ultimately
a Hamiltonian isotopy invariant of the Lagrangian L sitting inside the symplectic mani-
fold (P,w), even though its construction a priori depends on the isotopy ¢ and a choice of
appropriate almost complex structure J on P.

Now let us consider the Lagrangian RP" C CP", where CP" is given the standard Kahler
symplectic form w coming from the Fubini-Study metric and RP™ is the fixed point set of
the anti-holomorphic involutive isometry o given in homogeneous coordinates by

o([z0:21: .t zn])=[Z0: 21 .t Zn).

As we show in Section 3, RP" here is actually a monotone Lagrangian, and we indeed have
Yrpr =n+ 1> 3 for n > 2. Thus I*(RP™ : CP") is well-defined for n > 2 ' and our goal
in these notes is to prove the following theorem, following [Oh2].

!Actually I*(RP! : CP?!) is also well-defined and gives the expected outcome, as Oh shows by a more
careful analysis of the disk bubbling that can occur.



Theorem 1.3 Assume n > 2, and let RP™ and (CP™,w) be as above. Then
I*(RP™ : CP™) = H*(RP",Z/2) = (Z/2)"
as relatively Z/(n + 1)-graded modules.

One immediate corollary is a version of the Arnold conjecture:

Corollary 1.4 For any Hamiltonian isotopy ¢ = {¢: to<i<1 of CP™ such that RP™ intersects
o1 (RP™) transversally, we have

A(RP" N ¢ (RP™)) > n + 1 = dimg, H (RP", Z,/2).

In order to prove Theorem 1.3, we should first give some more details about the definition
of § : ¢€* — €*. Roughly speaking, § counts holomorphic strips with Lagrangian boundary
conditions between intersection points in L N ¢;(L). For this we pick an almost complex
structure J on P which is compatible with w (i.e. w(-,J-) defines a Riemannian metric on
P). Tt can be shown that for “generic” such J, the relevant moduli spaces of holomorphic
strips form manifolds, whose dimensions are controlled by the so-called “Maslov-Viterbo
index”. For sufficiently generic J, Oh uses a version of Gromov’s Compactness Theorem and

the assumption 37 > 3 to show that § is well-defined (i.e. the relevant count is finite) and
60od=0.
To make this rigorous, we need to make some definitions. Let z,y € I(L, ¢ : P).

Definition 1.5
1.9:={a+bieC|0<b<1}
2. Qyi={2:1— P|20)€L, 2(1) € p1(L), [t = ¢; '2(t)] =0 € m (P, L)}
3. Py:={ueli(O,P)|u(r,0) C L, u(t,1) C ¢1(L), u(r,-) € Q¥ 7}
4o Mygi={ue Py|0u:=%+J% =0, [, %‘2dtd7' < oo}
5. Myg(z,y) ={ue M| limou=u2, lim, u=y}
6. Mig(a,y) == Myolw.y)/R.
7. %, ={{ € L;_1(0,TP)|£(0) € TypP}.
Here . forms a Banach bundle over &, and 9, gives a section &, — £. We denote by
E,=Dd;(u): T,Ps — %,

the covariant linearization of 9; at u.
Now we are ready to state under what conditions we can define I*(L, ¢ : P) = Kerd/Imd.
In fact, the complex %* will depend on the choice of a “nice” compatible almost complex
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structure J, although it can be shown that the cohomology I*(L, ¢ : P) is independent of
the choice of J. Indeed, for a given J, the chain complex  : €* — €* can be defined by

oz = Z y(y, ox),

yel(L,p:P)

(y,d0z) = Z #(M\J,¢(y,x)) mod 2,

yel(L,,P)

where # (ﬂ M,(w,y)) denotes the number of zero-dimensional components of M g6(2,Y),

under the conditions:
1. (¢,J) is regular, i.e. CokerE, =0 for all u € M 4(z,y) and for all x,y € I(L,¢ : P)
2. # <M\J,¢(I,y)> is finite for all x,y € I(L, ¢ : P)
3. ZyGI(L’¢)<x,(5y>(y,5z> =0€Z/2forany x,z € I(L,¢: P)

We future ease, we’'ll call a pair (¢, J) satisfying these conditions admissible. Evidently
any admissible pair (¢, J) gives rise to a chain complex (¢*,d) with cohomology equal to
I*(L: P).

We can now break up the proof of Theorem 1.3 as follows. In Section 2 we show how to
pick a convenient Hamiltonian isotopy ¢ satisfying |I(L,¢ : P)| = |L N ¢1(L)] = n+ 1 by
exploiting the automorphism group of CP". We then show that the standard integrable J
on CP" indeed satisfies the above conditions, using:

Proposition 1.6 (Regularity) Let L = RP™ C CP™ be the standard one and (J, ¢) as above.
Then the pair (¢, J) is reqular, i.e. the linearization E., is surjective for all u € M 4.

Proposition 1.7 (Compactness) Under the above hypotheses, the zero-dimensional compo-

nent of M4 is compact and the one-dimensional component of M, is compact up to the
splitting of two-trajectories.

Proposition 1.7 implies that d o 4 = 0 in the usual way by noticing that compact one-
dimensional manifolds have an even number of boundary points and using the standard
gluing technique for broken trajectories.

Finally, we show:

Proposition 1.8 (Vanishing) Under the same hypotheses, 6 = 0.

In summary, given the construction of Langrangian Floer Cohomology for monotone
Lagrangians with ¥ > 3 as stated in Theorem 1.1, the computation of I*(RP"™ : CP™)
involves the following steps:

e Show that RP™ C CP" is a monotone Lagrangian with > > 3
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e Choose a convenient Hamiltonian isotopy ¢ and show that it has satisfies |I(L, ¢ :

P)l=|LN¢i(L)|=n+1

e Choose an almost complex structure J, namely the standard integrable one, and show
that the pair (¢, J) is admissible, i.e. (¢, J) is regular and we have appropriate com-
pactness statements to conclude that ¢ is well-defined and d 00 = 0

e Show that the boundary operator ¢ is trivial.

In the following sections, we give a rough sketch of these steps. We refer the reader
to [Oh2] for more of the details.

2 Choosing a Convenient Isotopy ¢

Recall that G = PU(n + 1) is the group of biholomorphic isometries of CP", and has a
maximal torus 7" C G. Actually the action of G is Hamiltonian, with moment map of the
action of T™, ® : CP™ — t*, given by

T
- 2| ?

fe(x) := (@(),£)

where z = (zg, T1, ..., Tn), ||Z||* = zoTo + ... + 2, T, and £ € t = the Lie algebra of T". Using
this one easily checks that

o fe = e,
where ¢ is the anti-holomorphic involutive isometry as before. From this we have
0" &cpr = —&cpn,

where écpn is the vector field on CP™ associated to & by the action of T™. Letting ¢, denote
the flow of {cpn, we then have

oo = ;L
Now since {cpn is orthogonal to RP™, we have
RP" Ny (RP™) = Crit(fe)
for t # 0 sufficiently small. One can check that
#(Critfe) =n+ 1.

We now choose £ € t such the corresponding flow 1, is periodic with period one, and then
define ¢y = vy jov for N sufficiently large. This gives an flow ¢; such that



o« 0¥ =id

o AH(LNe(L))=n+1

.« o0 =

e ¢, is a biholomorphic isometry for all ¢.

Remark 2.1 We note that m(CP™,RP") = 0, and therefore we need worry about whether
paths created in m (P, L) are trivial.

3 Monotonicity and > > 3

In this section we prove that the standard RP™ C CP" is a monotone Lagrangian. Firstly,
we claim that P = CP" is a monotone symplectic manifold, i.e. there exists some A > 0
such that for any u : S? — P we have

e (U TCP™)[S% = a/ urw.
52
Indeed, my(P) = 7Z is generated by CP! € CP", i.e. a J-holomorphic map
u:S*— CP,

which therefore has | g2 W'w equal to the symplectic area of u, which is positive. On the
other hand, recall that we have the characterization

TCP"™ = Homg(~, fyL),

where 7 is the tautological line bundle over CP". Then writing 1 for the trivial line bundle,
we have

TCP" & 1= Homce(y,7") @ Home(7, )

=~ Homg(y, ®"'1)
7n+1.

2

Therefore
a(TCP") = (n+ 1)1 (7),
and it follows by naturality of Chern classes that
c(uTCP™)[S* =n +1,

which is also positive.
Before proving that RP" is monotone, we record a useful lemma.
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Lemma 3.1 Let f, f': (D? 0D?) — (P, L) be smooth maps of pairs with
flapz = f'lapz.
Let u denote the corresponding map from S? = D? uUD’ to P defined by gluing, i.e.
f(z2) :z€eD?
u(z) = { fl(z) :z¢€ D’
Then we have
p(f) = u(f') = 2e1(P,w)[u].

Proof Indeed, since any symplectic vector bundle over D? is trivial, we can view u*(P,w)
as being defined by an element [us] € m(Sp(2n)) = Z. Then [us] € Z gives ¢;(P,w)[u], and
its image under the map

m(Sp(2n)) = m(A(C™))
gives p(f) — u(f"). But the above map can be identified with
X2 : 4 — 7.
Now we establish monotonicity using the following lemma:

Lemma 3.2 Let (P,w) be a monotone symplectic manifold with monotonicity constant o >
0, and let o : P — P be an anti-symplectic involution with nonempty fixed point set L = Fix
o. Then L is a monotone Lagrangian.

Proof Let f: (D* 0D?*) — (P, L) be a smooth map of pairs, and let f'(z) = oo f(z). Then
floap2 = f'|ap> and so we can glue f and f” as in Lemma 3.1 to get a map u : S* — P. From
Lemma 3.1, we have

2u(f) = u(f) — p(f") = 2e1(w),

1.e.

p(f) = er(u).

An easy calculation also shows that we have

/ urw =2 ffw
52 D2
since ¢ is anti-symplectic. Thus we have
u(f) = er(u) = afw)(u) = 2aw](f),
ie.
L, ([f1]) = 20L([f])-

Remark 3.3 Note that from the formula p(f) = c1(u) and our above computation it easily
follows that Xgprn = n + 1.



4 Compactness

In this section our goal is to prove Proposition 1.7, assuming regularity of (¢,.J). This
will follow from a form of Gromov’s Compactness Theorem. Roughly speaking, this says
that for any sequence u; € M 4(x,y) with constant Maslov-Viterbo index I and uniformly
bounded energy, there exists a subequence converging to some (u, v, w), where u is a broken
k-trajectory in M J¢: U is a collection of finite energy J-holomorphic spheres, and w is
a collection of finite energy J-holomorphic disks. Moreover, we have the following index
formula:

I = Z Index(u;) + 2 Z c1(vy) + Z p(wy).

Here Index(u;) denotes the Maslov-Viterbo index of u;, which can also be shown to be the
local dimension of M ;4 near u;, and therefore in particular is nonnegative. Moreover, since
the v;’s and w;’s are J-holomorphic, monotonicity implies that the second and third sums
above must also be nonnegative. But for nontrivial v; or w; we would then have

2e1(v,)]: Ju(w)| > 5 > 3.

This shows that for I = 1,2 there can be no sphere or disk bubbles, hence the Proposition.

5 Triviality of the Boundary Operator

Next we prove that § = 0, again assuming regularity of (¢, J). By the definition of ¢, it
suffices to show that the finite number # (./\//lj\d)(x, y)) is always even. We will exhibit a

fixed point free involution on /\//lj\¢(x, y) which associates u € /\//lj\¢(x, y) with
n=¢lu

for some 1 <1 < N —1 (recall that ¢?" = id).
Using the relation o¢;0 = ¢!, we have for any p € L = Fix 0 = RP™:

2N—1 2N—1 2N—1 2N—1

06 ) =0 o) = (7)) =67 ()

hence ¢2 ' (p) € L. Then since ¢2" ' (RP") = RP" and ¢2" ' (¢1(RP")) = ¢y (RP"), it
follows that for u € M 4(x,y) we have again ¢2" ' (u) € M 4(z,y).

Now if ¢2" " (u) # u, we set w:= ¢?>" ' (u) (one can show that T cannot be a translation
of u since ¢, is perpendicular to L). On the other hand, if gb%N_l(u) = u, we can repeat
the above, with N replaced by N — 1, to get an element ¢2" ~(u) € M 4(z,y). As before,

if 92" *(u) 2 u, we set W := ¢2" (u), otherwise we repeat the process. By choosing N
sufficiently large from the beginning so that
$u# u



for any such u, we can guarantee that this process eventually terminates. Moreover, it is
easy to check that the pairing u — u indeed gives a well-defined fixed point free involution

on M 4(x,y).

6 Regularity of (¢, J)

Finally, we sketch a proof of Proposition 1.6, which we have been postponing until now. Let
u € Mye(z,y). Recall that 0; gives a section of the bundle

L — <@¢,
where

Ly ={¢€ L{ ,(©,TP)|&(0) € Ty P}
Py ={ueL2(O,P)|u(r,0)C L, u(r,1) C ¢1(L) ¥ 7}

Our goal is to show that the covariant linearization E, = Dd;(u) : 7,2y — £, at u is

surjective.
Let £ € T,2,, and let us be a path in Py with ug = v and (d/ds)|s—ous = . Then we
have

Eu(g) = Vs’s:OEJ(us)-
Using the fact that VJ = 0, a short computation shows that
E, (&) = (V; + IV,

i.e. E, looks like a covariant version of the 9, operator.
Let (E,)* be the adjoint of E,. Then to show that Coker(E,) = 0, it will suffice to show
that n = Ker(E,)* implies that n = 0. Using the relation

<€7 (Eu)*n>2 = <Eu£7 7]>2

and massaging the right hand side, one can prove the following characterization of the
cokernel:

CokerE, = {n € L; (©,u*TP)| —V.n+JVn =0, n(r,1) € To,(RP™), n(r,0) € TRP"}.

Now we show how by reflecting u 2% — 1 times we can get a (finite energy) .J-holomorphic
map from the cylinder

Cyn = (R x4[0,2"])/((a,0) ~ (a,2"))
to P. Indeed, let

o1 = droor

uy (7, t) == oqu(r, 1 —t).



Note that since o is anti-holomorphic, u; is J-holomorphic, and one can show that

Fix ¢1U¢1_1 = ¢ (RP")
ul(T7 0) S ¢1(L)
ui(7,1) € ¢3(u(r,0)).

Similarly, let

2 -2
o9 1= ¢10¢;

ug(7,t) := oguy (1,1 — t).

We can repeat this process, defining w3, uy, ..., and it is not hard to show using qb%N = id that
uyny = u, and we therefore get the promised J-holomorphic map

CQN—>P.

We can now appeal to a standard removal of singularities theorem:

Theorem 6.1 (Remowval of singularities) Let (P,w) be a symplectic manifold with compatible
almost complex structure J, and let v : D*\ {0} — P be a J-holomorphic map such that
fD2\{0} w*w < 0o. Then u extends to a J-holomorphic map on D?.

By the removal of singularities theorem and the fact that Cyo~y is conformally equivalent to
CP'\ {0, 0}, we can extend our map Conv — P to a J-holomorphic map f : CP' — CP",

Now by applying the same reflection process to our n (which we are trying to show is
identically 0), we get a section 77 of f*(TCP™) which is anti-holomorphic, which corresponds
to a holomorphic section of f*(T*CP™). Now the fact that n = 0 follows from the following
classical result:

Lemma 6.2 Let f : CP' — CP" be a non-constant holomorphic map with respect to the
standard integrable almost complex structures on CP' and CP™. Then there is no nontrivial
holmorphic section of f*(T*CP™).

Proof By Grothendieck’s splitting theorem for holomorphic vector bundles over CP!, E :=
[*(T*CP™) splits as a direct sum of holomorphic line bundles

E=01®..®L,.

Using the large symmetry group of CP", it is not hard to show that each L; must admit a
nontrivial holomorphic section which is zero at a point. This means that ¢;(L;) > 0 for each
1, and therefore for each i we have

Cl(L;k) = —Cl(Li) < 0.

Since f*(T*CP™) =2 E*= L& ...® L}, f*(T*CP™) cannot admit a nontrivial holomorphic
section.
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