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1 Introduction

Here is the main result we wish to discuss:

Theorem 1.1 (Gromov-Lawson, Schoen-Yau) [GL,RS,SY] Let M be a Riemannian mani-
fold with everywhere positive scalar curvature (p.s.c.), and suppose that M ′ is obtained from
M by performing a surgery of codimension q ≥ 3. Then M ′ can also be given a p.s.c. metric.

By way of review, let us first recall the basic premise of surgery theory. We observe that
for Sp and Dp the sphere and disk respectively of dimension p, we have

∂(Sp ×Dq) = Sp × Sq−1 = ∂(Dp+1 × Sq−1).

Given an embedded Sp ×Dq ⊂M , let

M ′ = M \ (Sp ×Dq) ∪Sp×Sq−1 (Dp+1 × Sq−1).

That is, M ′ is obtained by removing an embedded Sp × Dq and replacing it with Dp+1 ×
Sq−1, glued along the common boundary. We say that M ′ is obtained from M by a
surgery of dimension p (or codimension q).

Example 1.2

Figure 1: Surgery of dimension 0
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Figure 2: The trace of a surgery of dimension 0

Remark 1.3 To specify the embedded Sp × Dq ⊂ M , it suffices to specify an embedded
Sp ⊂M with a trivial normal bundle, since then a tubular neighborhood does the trick.

Remark 1.4 Two compact oriented manifolds are related by a sequence of surgeries (of any
dimension) if and only if they are (oriented) corbodant.

• ⇐=: Follows from standard Morse theory [Mil, MSS]

• =⇒: We construct the trace of a p-surgery:

W := M × I ∪Sp×Dq (Dp+1 ×Dq).

Then ∂W = M
∐
M ′.

Example 1.5 See Figure 2.

Remark 1.6 Since cobordism classes of manifolds (with various decorations) are in many
cases well-understood, this foreshadows the beginning of the classification of (high dimen-
sional) manifolds, leaving us with the task of understanding how a manifold can change
under surgeries.

2 Some Consequences

Before discussing the proof of Theorem 1.1, we give some consequences.

Theorem 2.1 (Gromov-Lawson) [GL] If M is a closed, simply connected manifold of di-
mension n ≥ 5, w2(M) = 0 (i.e. M is spin), and if M is spin-cobordant to a manifold
admitting p.s.c., then M also admits a metric of p.s.c.

Here w2(M) ∈ H2(M ;Z/2) denotes the second Stiefel-Whitney class of the tangent bundle
of M .
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Theorem 2.2 (Gromov-Lawson) [GL] If M is a closed, simply connected manifold of di-
mension n ≥ 5 and if w2(M) 6= 0, then M admits a p.s.c. metric.

Recall that a spin structure on an oriented manifold Mn is a principle Spin(n)-bundle

F̃ (M) over M sitting in a diagram of the form

F̃ (M)

φ

%%JJJJJJJJJJJJJJ

π̃

��

F (M)

π

yysssssssssssssss

M

with φ a double cover, F (M) the bundle of orthonormal oriented n-frames on M , π and π̃
the obvious projections, and such that φ is equivariant with respect to the covering homo-
morphism

Spin(n)→ SO(n).

The situation can also be viewed using classifying maps as

BSpin(n)

M

spin structure

33hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh orientation //

tangent bundle

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW BSO(n)

BO(n)

In fact, the obstructions to finding an orientation and spin structure are precisely w1(M) ∈
H1(M ;Z/2) and w2(M) ∈ H2(M ;Z/2) respectively. Therefore an oriented manifold is spin
if and only if w2(M) = 0.

Remark 2.3 Orientations and spin structures (or more generally so-called “(B, f)-structures”
[Wes]) give rise to the cobordism rings ΩSpin

∗ and ΩSO
∗ respectively. In these rings we have:

• elements: (decorated) cobordism classes of (decorated) manifolds

• addition: disjoint union of manifolds

• multiplication: cartesian product of manifolds.

3



n ΩSpin
n ΩSO

n

0 Z Z
1 Z/2 0
2 Z/2 0
3 0 0
4 Z Z
5 0 Z/2
6 0 0
7 0 0
8 Z⊕ Z Z⊕ Z

• grading: dimension of manifolds

In low dimensions, these are given by [LM]

In general, we have

Theorem 2.4 (Bordism Theorem) Let M be a closed manifold of dimension n ≥ 5, with a
(B, f)-structure such that the classifying map M → B is a k-equivalence for k < bn+1

2
c.

B

f

��
M

k-equivalence

;;vvvvvvvvvvvvv
// BO

Then if M is (B, f)-cobordant to N , M is obtained from N by a sequence of surgeries of
codimension q > k.

This puts us in a strong position to apply Theorem 1.1:

Corollary 2.5 If M → B is a 2-equivalence (ex: B = BSpin and M → BSpin is a 2-
equivalence) and M is (B, f)-cobordant to a manifold admitting p.s.c., then M admits p.s.c.

Proof idea for Theorems 2.1, 2.2, and 2.4: Let W be a (SO or Spin) bordism between
M and N , with π1(M) = 0 and N admitting a p.s.c. metric. Using surgery on W , show
that we can assume π1(N) = π1(W ) = 0 and Hi(W,M) = 0 for small i. Following the proof
of the h-cobordism theorem [MSS,Lüc], we can get rid of the low dimensional handles of W
(with respect to M) to conclude that N is obtained from M by surgeries of dimension ≥ 3,
i.e. M is obtained from N by surgeries of codimension ≥ 3. We can then appeal to Theorem
1.1.

To complete the proof of Theorem 2.2, show that (in high dimensions) ΩSO
∗ is generated

by manifolds admitting p.s.c., namely complex projective spaces (which can be given the
Fubini study metric) and “friends” of these.
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Figure 3: The curve γ

3 The Main Proof

We are now ready to prove Theorem 1.1, after a quick remark about the codimension as-
sumption.

Remark 3.1 The assumption in Theorem 1.1 that the surgeries must be codimension ≥ 3
cannot be removed. Recall that no torus of any dimension admits positive scalar curvature
[SY]. On the other hand, we know for example that T2,T3,T6, and T7 are obtained by
surgeries from S2, S3, S6, and S7 respectively, since ΩSO

2 = ΩSO
3 = ΩSO

6 = ΩSO
7 = 0. Evidently

some of the surgeries must be of codimension < 3, since the spheres admit positive scalar
curvature.

Proof (Theorem 1.1) For simplicity, we first consider the case of codimension n, i.e. surgery
on S0, i.e. “connected sum”.

Let M be an n-dimensional p.s.c. manifold, and let Dn be a small ball of radius r in
geodesic normal coordinates on M (so that radial lines are geodesics). We’ll construct some
suitable C∞ curve γ in the “t-r” plane, and consider

T = {(x, t) ∈ Dn × R : (|x| = r, t) ∈ γ},

where γ looks roughly as in Figure 3.
We give T the induced metric from Dn × R. See Figure 4.
We choose γ to satisfy:

1. γ lies in the region 0 < r ≤ r of the t-r plane

2. γ begins with a vertical line segment t = 0, r1 ≤ r < r

3. γ ends with a horizontal line segment r = r∞ > 0 for r∞ very small
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Figure 4: Constructing T

4. in the region r∞ < r < r1, γ is a graph r = f(t) for a function f which is decreasing
and (weakly) concave up

5. T has everywhere positive scalar curvature (this is the hard part!).

For now, assume we’ve constructed such a γ. We’ll make T “standard” on the cylindrical
end, using:

Lemma 3.2 [GL] Let gε be the metric induced by Dn ⊂Mn on Sn−1(ε) ⊂ Dn, and let g0,ε
be the standard round metric on the sphere of radius ε. Then

(1/ε2)gε −→ (1/ε2)g0,ε = g0,1

in the C2 topology of metrics on Sn−1.

Then by picking r∞ sufficiently small, we can ensure that the induced metric gr∞ on
Sn−1(r∞) is isotopic (through p.s.c. metrics) to g0,r∞ (recall that p.s.c. > 0 is an open
condition). We can then use

Lemma 3.3 [RS] Let ds2t , 0 ≤ t ≤ 1 be a C∞ family of p.s.c. metrics on a compact
manifold X. Then for a >> 0, the metric ds2t/a + dt2 on M × [0, a] has p.s.c..

Stated another way, “isotopic metrics are concordant”.

Proof The scalar curvature on M × [0, a] with the metric ds2t/a + dt2 is given by

κ(x, t) = κt/a(x) +O(1/a2),

where κt/a is the scalar curvature on M with respect to the metric ds2t/a.
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Figure 5: Performing a connected sum of p.s.c. manifolds

Figure 6: Performing a general surgery

Together these allow us to make T standard on the cylindrical end, so we can perform a
connected sum (see Figure 5).

Example 3.4

Remark 3.5 For higher dimensional surgeries, we can proceed in a similar manner: find
an embedded Sp ×Dn−p ⊂M which is a geodesic tubular neighborhood of Sp, and deform it
using the same γ. See Figure 6.

T is constructed to have p.s.c. and to be a “standard” (Sp, g0,1)×(Sn−p−1, g0,r∞)×interval
on the cylindrical end. Namely, we set

T = {(y, x, t) ∈ Sp ×Dn−p(r) : (t, ||x||) ∈ γ}.
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On the cylindrical end, we then attach a “standard compatible” Dp+1(1) × Sn−p−1(r∞) of
p.s.c..

Finally, we show how to construct γ. Recall the Gauss curvature equation: for a hypersurface
Hn ⊂ Xn+1, with e, e′ principal directions for the second fundamental form at a point p ∈ Hn,
we have

Rsect
Hn (e, e′; p) = Rsect

Xn+1(e, e′; p) + λeλe′

(here Rsect denotes the sectional curvature and λe and λe′ are the corresponding principal
curvatures.

Using this and some careful arguing, we can deduce the following formula for the scalar
curvature of T :

κT = κM +O(1) sin2 θ + (q − 1)(q − 2)
sin2 θ

r2
− (q − 1)

k sin θ

r
−O(r)(q − 1)k sin θ

where κT , κM denote scalar curvatures, k is the curvature of γ as a plane curve, and θ is the
angle between γ and a vertical line.

Remark 3.6 The condition Sp = q ≥ 3 plays a role here, since our careful controlling of
κT will rely on the fact that q − 1 > 0 and q − 2 > 0 in the equation above.

Then for appropriate constants k0, C, C
′ coming from the lower bound for κM (M is

compact) and the O(1) and O(r) terms, we have

κT > k0(q − 1)− C sin2 θ(q − 1) + (q − 1)(q − 2)
sin2 θ

r2
− (q − 1)

k sin θ

r
− C ′r(q − 1)k sin θ.

Then we have

κT > 0⇐=
k0r

sin θ
− Cr sin θ + (q − 2)

sin θ

r
− k − C ′r2k ≥ 0

⇐⇒ (1 + C ′r2)k ≤ (q − 2)
sin θ

r
+

k0r

sin θ
− Cr sin θ (1)

So we need to get from one end of the curve to the other, all the while satisfying (1).

• Firstly, pick a small 0 < θ0 < arcsin(
√
k0/C), i.e. sin θ0 <

√
k0/C. Then for θ < θ0,

the last two terms of (1) are k0r
sin θ
−Cr sin θ > 0. Then for a straight line of angle θ < θ0,

we have k = 0 and so (1) is satisfied. We begin by as in Figure 7.

• Next pick r0 with 0 < r0 < min
(√

1
4C
,
√

1
2C′

)
, hence

(q − 2)
sin θ

r
− Cr sin θ ≥ 3 sin θ

4r
1 + C ′r2 ≤ 3/2.
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Figure 7: The first part of γ

Then for r ≤ r0 we have

(1)⇐= k
3

2
≤ 3 sin θ

4r
+

k0r

sin θ

⇐= k ≤ 2

3

3 sin θ

4r
=

sin θ

2r
.

So the curve (t, f(t) = r) for r ≤ r0 is only constrained by k ≤ sin θ
2r

. Choosing “as
much curvature as allowed”, we get the following ODE:

k =
sin θ

2r
 f ′′ =

1 + (f ′)2

2f

with sin θ = 1√
1+(f ′)2

and k = f ′′

(1+(f ′)2)3/2
.

This can be solved explicitly (check!) as

f(t) =
1

C1

+
C1

4
(t− C2)

2

for constants C1, C2.
So we follow our straight line of angle θ0 until r ≤ r0, then patch together with the above

curve r = f(t) for suitably chosen C1, C2 until r is very small, then patch with a straight
horizontal line r = r∞. By construction (1) is always satisfied, so this completes the proof.
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