Positive Scalar Curvature and Surgery

Kyler Siegel

November 26, 2012

1 Introduction

Here is the main result we wish to discuss:
Theorem 1.1 (Gromov-Lawson, Schoen-Yau) [GL, RS, SY] Let M be a Riemannian manifold with everywhere positive scalar curvature (p.s.c.), and suppose that M^{\prime} is obtained from M by performing a surgery of codimension $q \geq 3$. Then M^{\prime} can also be given a p.s.c. metric.

By way of review, let us first recall the basic premise of surgery theory. We observe that for S^{p} and D^{p} the sphere and disk respectively of dimension p, we have

$$
\partial\left(S^{p} \times D^{q}\right)=S^{p} \times S^{q-1}=\partial\left(D^{p+1} \times S^{q-1}\right)
$$

Given an embedded $S^{p} \times D^{q} \subset M$, let

$$
M^{\prime}=M \backslash\left(S^{p} \times D^{q}\right) \cup_{S^{p} \times S^{q-1}}\left(D^{p+1} \times S^{q-1}\right) .
$$

That is, M^{\prime} is obtained by removing an embedded $S^{p} \times D^{q}$ and replacing it with $D^{p+1} \times$ S^{q-1}, glued along the common boundary. We say that M^{\prime} is obtained from M by a surgery of dimension p (or codimension q).

Example 1.2

Figure 1: Surgery of dimension 0

Figure 2: The trace of a surgery of dimension 0

Remark 1.3 To specify the embedded $S^{p} \times D^{q} \subset M$, it suffices to specify an embedded $S^{p} \subset M$ with a trivial normal bundle, since then a tubular neighborhood does the trick.

Remark 1.4 Two compact oriented manifolds are related by a sequence of surgeries (of any dimension) if and only if they are (oriented) corbodant.

- \Longleftarrow : Follows from standard Morse theory [Mil, MSS]
- \Longrightarrow : We construct the trace of a p-surgery:

$$
W:=M \times I \cup_{S^{p} \times D^{q}}\left(D^{p+1} \times D^{q}\right) .
$$

Then $\partial W=\bar{M} \coprod M^{\prime}$.

Example 1.5 See Figure 2.
Remark 1.6 Since cobordism classes of manifolds (with various decorations) are in many cases well-understood, this foreshadows the beginning of the classification of (high dimensional) manifolds, leaving us with the task of understanding how a manifold can change under surgeries.

2 Some Consequences

Before discussing the proof of Theorem 1.1, we give some consequences.
Theorem 2.1 (Gromov-Lawson) [GL] If M is a closed, simply connected manifold of dimension $n \geq 5, w_{2}(M)=0$ (i.e. M is spin), and if M is spin-cobordant to a manifold admitting p.s.c., then M also admits a metric of p.s.c.

Here $w_{2}(M) \in H^{2}(M ; \mathbb{Z} / 2)$ denotes the second Stiefel-Whitney class of the tangent bundle of M.

Theorem 2.2 (Gromov-Lawson) [GL] If M is a closed, simply connected manifold of dimension $n \geq 5$ and if $w_{2}(M) \neq 0$, then M admits a p.s.c. metric.

Recall that a spin structure on an oriented manifold M^{n} is a principle $\operatorname{Spin}(n)$-bundle $\tilde{F}(M)$ over M sitting in a diagram of the form

with ϕ a double cover, $F(M)$ the bundle of orthonormal oriented n-frames on M, π and $\tilde{\pi}$ the obvious projections, and such that ϕ is equivariant with respect to the covering homomorphism

$$
\operatorname{Spin}(n) \rightarrow \mathrm{SO}(n)
$$

The situation can also be viewed using classifying maps as

In fact, the obstructions to finding an orientation and spin structure are precisely $w_{1}(M) \in$ $H^{1}(M ; \mathbb{Z} / 2)$ and $w_{2}(M) \in H^{2}(M ; \mathbb{Z} / 2)$ respectively. Therefore an oriented manifold is spin if and only if $w_{2}(M)=0$.

Remark 2.3 Orientations and spin structures (or more generally so-called" (B, f)-structures" [Wes]) give rise to the cobordism rings $\Omega_{*}^{\text {Spin }}$ and $\Omega_{*}^{S O}$ respectively. In these rings we have:

- elements: (decorated) cobordism classes of (decorated) manifolds
- addition: disjoint union of manifolds
- multiplication: cartesian product of manifolds.

n	$\Omega_{n}^{\text {Spin }}$	$\Omega_{n}^{\text {SO }}$
0	\mathbb{Z}	\mathbb{Z}
1	$\mathbb{Z} / 2$	0
2	$\mathbb{Z} / 2$	0
3	0	0
4	\mathbb{Z}	\mathbb{Z}
5	0	$\mathbb{Z} / 2$
6	0	0
7	0	0
8	$\mathbb{Z} \oplus \mathbb{Z}$	$\mathbb{Z} \oplus \mathbb{Z}$

- grading: dimension of manifolds

In low dimensions, these are given by [LM]
In general, we have
Theorem 2.4 (Bordism Theorem) Let M be a closed manifold of dimension $n \geq 5$, with a (B, f)-structure such that the classifying map $M \rightarrow B$ is a k-equivalence for $k<\left\lfloor\frac{n+1}{2}\right\rfloor$.

Then if M is (B, f)-cobordant to N, M is obtained from N by a sequence of surgeries of codimension $q>k$.

This puts us in a strong position to apply Theorem 1.1:
Corollary 2.5 If $M \rightarrow B$ is a 2-equivalence (ex: $B=B$ Spin and $M \rightarrow B S p i n$ is a 2equivalence) and M is (B, f)-cobordant to a manifold admitting p.s.c., then M admits p.s.c.

Proof idea for Theorems 2.1, 2.2, and 2.4: Let W be a (SO or Spin) bordism between M and N, with $\pi_{1}(M)=0$ and N admitting a p.s.c. metric. Using surgery on W, show that we can assume $\pi_{1}(N)=\pi_{1}(W)=0$ and $H_{i}(W, M)=0$ for small i. Following the proof of the h-cobordism theorem [MSS, Lüc], we can get rid of the low dimensional handles of W (with respect to M) to conclude that N is obtained from M by surgeries of dimension ≥ 3, i.e. M is obtained from N by surgeries of codimension ≥ 3. We can then appeal to Theorem 1.1.

To complete the proof of Theorem 2.2, show that (in high dimensions) $\Omega_{*}^{\text {SO }}$ is generated by manifolds admitting p.s.c., namely complex projective spaces (which can be given the Fubini study metric) and "friends" of these.

Figure 3: The curve γ

3 The Main Proof

We are now ready to prove Theorem 1.1, after a quick remark about the codimension assumption.

Remark 3.1 The assumption in Theorem 1.1 that the surgeries must be codimension ≥ 3 cannot be removed. Recall that no torus of any dimension admits positive scalar curvature [SY]. On the other hand, we know for example that $\mathbb{T}^{2}, \mathbb{T}^{3}, \mathbb{T}^{6}$, and \mathbb{T}^{7} are obtained by surgeries from S^{2}, S^{3}, S^{6}, and S^{7} respectively, since $\Omega_{2}^{S O}=\Omega_{3}^{S O}=\Omega_{6}^{S O}=\Omega_{7}^{S O}=0$. Evidently some of the surgeries must be of codimension <3, since the spheres admit positive scalar curvature.

Proof (Theorem 1.1) For simplicity, we first consider the case of codimension n, i.e. surgery on S^{0}, i.e. "connected sum".

Let M be an n-dimensional p.s.c. manifold, and let D^{n} be a small ball of radius \bar{r} in geodesic normal coordinates on M (so that radial lines are geodesics). We'll construct some suitable \mathcal{C}^{∞} curve γ in the " $t-r$ " plane, and consider

$$
T=\left\{(x, t) \in D^{n} \times \mathbb{R}:(|x|=r, t) \in \gamma\right\}
$$

where γ looks roughly as in Figure 3.
We give T the induced metric from $D^{n} \times \mathbb{R}$. See Figure 4 .
We choose γ to satisfy:

1. γ lies in the region $0<r \leq \bar{r}$ of the $t-r$ plane
2. γ begins with a vertical line segment $t=0, r_{1} \leq r<\bar{r}$
3. γ ends with a horizontal line segment $r=r_{\infty}>0$ for r_{∞} very small

Figure 4: Constructing T
4. in the region $r_{\infty}<r<r_{1}, \gamma$ is a graph $r=f(t)$ for a function f which is decreasing and (weakly) concave up
5. T has everywhere positive scalar curvature (this is the hard part!).

For now, assume we've constructed such a γ. We'll make T "standard" on the cylindrical end, using:

Lemma 3.2[GL] Let g_{ϵ} be the metric induced by $D^{n} \subset M^{n}$ on $S^{n-1}(\epsilon) \subset D^{n}$, and let $g_{0, \epsilon}$ be the standard round metric on the sphere of radius ϵ. Then

$$
\left(1 / \epsilon^{2}\right) g_{\epsilon} \longrightarrow\left(1 / \epsilon^{2}\right) g_{0, \epsilon}=g_{0,1}
$$

in the \mathcal{C}^{2} topology of metrics on S^{n-1}.
Then by picking r_{∞} sufficiently small, we can ensure that the induced metric $g_{r_{\infty}}$ on $S^{n-1}\left(r_{\infty}\right)$ is isotopic (through p.s.c. metrics) to $g_{0, r_{\infty}}$ (recall that p.s.c. >0 is an open condition). We can then use

Lemma 3.3 [RS] Let $d s_{t}^{2}, 0 \leq t \leq 1$ be a \mathcal{C}^{∞} family of p.s.c. metrics on a compact manifold X. Then for $a \gg 0$, the metric $d s_{t / a}^{2}+d t^{2}$ on $M \times[0, a]$ has p.s.c..

Stated another way, "isotopic metrics are concordant".
Proof The scalar curvature on $M \times[0, a]$ with the metric $d s_{t / a}^{2}+d t^{2}$ is given by

$$
\kappa(x, t)=\kappa_{t / a}(x)+O\left(1 / a^{2}\right)
$$

where $\kappa_{t / a}$ is the scalar curvature on M with respect to the metric $d s_{t / a}^{2}$.

Figure 5: Performing a connected sum of p.s.c. manifolds

Figure 6: Performing a general surgery

Together these allow us to make T standard on the cylindrical end, so we can perform a connected sum (see Figure 5).

Example 3.4

Remark 3.5 For higher dimensional surgeries, we can proceed in a similar manner: find an embedded $S^{p} \times D^{n-p} \subset M$ which is a geodesic tubular neighborhood of S^{p}, and deform it using the same γ. See Figure 6.
T is constructed to have p.s.c. and to be a "standard" $\left(S^{p}, g_{0,1}\right) \times\left(S^{n-p-1}, g_{0, r_{\infty}}\right) \times$ interval on the cylindrical end. Namely, we set

$$
T=\left\{(y, x, t) \in S^{p} \times D^{n-p}(\bar{r}):(t,\|x\|) \in \gamma\right\}
$$

On the cylindrical end, we then attach a "standard compatible" $D^{p+1}(1) \times S^{n-p-1}\left(r_{\infty}\right)$ of p.s.c..

Finally, we show how to construct γ. Recall the Gauss curvature equation: for a hypersurface $H^{n} \subset X^{n+1}$, with e, e^{\prime} principal directions for the second fundamental form at a point $p \in H^{n}$, we have

$$
R_{H^{n}}^{\mathrm{sect}}\left(e, e^{\prime} ; p\right)=R_{X^{n+1}}^{\mathrm{sect}}\left(e, e^{\prime} ; p\right)+\lambda_{e} \lambda_{e^{\prime}}
$$

(here $R^{\text {sect }}$ denotes the sectional curvature and λ_{e} and $\lambda_{e^{\prime}}$ are the corresponding principal curvatures.

Using this and some careful arguing, we can deduce the following formula for the scalar curvature of T :

$$
\kappa_{T}=\kappa_{M}+O(1) \sin ^{2} \theta+(q-1)(q-2) \frac{\sin ^{2} \theta}{r^{2}}-(q-1) \frac{k \sin \theta}{r}-O(r)(q-1) k \sin \theta
$$

where κ_{T}, κ_{M} denote scalar curvatures, k is the curvature of γ as a plane curve, and θ is the angle between γ and a vertical line.

Remark 3.6 The condition $S^{p}=q \geq 3$ plays a role here, since our careful controlling of κ_{T} will rely on the fact that $q-1>0$ and $q-2>0$ in the equation above.

Then for appropriate constants k_{0}, C, C^{\prime} coming from the lower bound for $\kappa_{M}(M$ is compact) and the $O(1)$ and $O(r)$ terms, we have

$$
\kappa_{T}>k_{0}(q-1)-C \sin ^{2} \theta(q-1)+(q-1)(q-2) \frac{\sin ^{2} \theta}{r^{2}}-(q-1) \frac{k \sin \theta}{r}-C^{\prime} r(q-1) k \sin \theta
$$

Then we have

$$
\begin{align*}
\kappa_{T}>0 & \Longleftrightarrow \frac{k_{0} r}{\sin \theta}-C r \sin \theta+(q-2) \frac{\sin \theta}{r}-k-C^{\prime} r^{2} k \geq 0 \\
& \Longleftrightarrow\left(1+C^{\prime} r^{2}\right) k \leq(q-2) \frac{\sin \theta}{r}+\frac{k_{0} r}{\sin \theta}-C r \sin \theta \tag{1}
\end{align*}
$$

So we need to get from one end of the curve to the other, all the while satisfying (1).

- Firstly, pick a small $0<\theta_{0}<\arcsin \left(\sqrt{k_{0} / C}\right)$, i.e. $\sin \theta_{0}<\sqrt{k_{0} / C}$. Then for $\theta<\theta_{0}$, the last two terms of (1) are $\frac{k_{0} r}{\sin \theta}-C r \sin \theta>0$. Then for a straight line of angle $\theta<\theta_{0}$, we have $k=0$ and so (1) is satisfied. We begin by as in Figure 7.
- Next pick r_{0} with $0<r_{0}<\min \left(\sqrt{\frac{1}{4 C}}, \sqrt{\frac{1}{2 C^{\prime}}}\right)$, hence

$$
\begin{array}{r}
(q-2) \frac{\sin \theta}{r}-C r \sin \theta \geq \frac{3 \sin \theta}{4 r} \\
1+C^{\prime} r^{2} \leq 3 / 2
\end{array}
$$

Figure 7: The first part of γ

Then for $r \leq r_{0}$ we have

$$
\begin{aligned}
(1) & \Longleftarrow k \frac{3}{2} \leq \frac{3 \sin \theta}{4 r}+\frac{k_{0} r}{\sin \theta} \\
& \Longleftarrow k \leq \frac{2}{3} \frac{3 \sin \theta}{4 r}=\frac{\sin \theta}{2 r} .
\end{aligned}
$$

So the curve $(t, f(t)=r)$ for $r \leq r_{0}$ is only constrained by $k \leq \frac{\sin \theta}{2 r}$. Choosing "as much curvature as allowed", we get the following ODE:

$$
k=\frac{\sin \theta}{2 r} \rightsquigarrow f^{\prime \prime}=\frac{1+\left(f^{\prime}\right)^{2}}{2 f}
$$

with $\sin \theta=\frac{1}{\sqrt{1+\left(f^{\prime}\right)^{2}}}$ and $k=\frac{f^{\prime \prime}}{\left(1+\left(f^{\prime}\right)^{2}\right)^{3 / 2}}$.
This can be solved explicitly (check!) as

$$
f(t)=\frac{1}{C_{1}}+\frac{C_{1}}{4}\left(t-C_{2}\right)^{2}
$$

for constants C_{1}, C_{2}.
So we follow our straight line of angle θ_{0} until $r \leq r_{0}$, then patch together with the above curve $r=f(t)$ for suitably chosen C_{1}, C_{2} until r is very small, then patch with a straight horizontal line $r=r_{\infty}$. By construction (1) is always satisfied, so this completes the proof.

References

[GL] M. Gromov and H.B. Lawson. The classification of simply connected manifolds of positive scalar curvature. Ann. of Math 111(1980), 423-434.
[LM] H.B.A. Lawson and M.L.A. Michelsohn. Spin Geometry (PMS-38). Princeton Mathematical Series. University Press, 1989.
[Lüc] W. Lück. A basic introduction to surgery theory. High dimensional manifold theory (2004), 1-224.
[Mil] J.W. Milnor. Morse Theory.(AM-51), volume 51. Princeton university press, 1963.
[MSS] J.W. Milnor, L.C. Siebenmann, and J. Sondow. Lectures on the h-cobordism theorem, volume 963. Princeton University Press Princeton, NJ, 1965.
[RS] Jonathan Rosenberg and Stephan Stolz. Metrics of Positive Scalar Curvature and Connections With Surgery. In Annals of Math. Studies, pages 353-386. Princeton Univ. Press, 2001.
[SY] R. Schoen and S. T. Yau. On the structure of manifolds with positive scalar curvature. manuscripta mathematica 28(1979), 159-183. 10.1007/BF01647970.
[Wes] T. Weston. An Introduction to Cobordism Theory.

