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1 Prologue

Our goal (following [Wal]):

Question 1.1 For 2n ≥ 6, what is the diffeomorphic classification of (n − 1)-connected
2n-manifolds?

This is the question Milnor was actually working as a long-term project during the 1950’s
when he “accidentally” discovered exotic spheres, as he explains in [Mil]. This was before
the breakthrough of Smale and the Poincaré Conjecture still seemed completely out of reach.
Somehow this was the “next easiest” problem in manifold topology and possibly ammenable
to the extraordinary tools already developed by Thom and Hirzebruch.

First consider how we might construct examples in dimensions divisible by four.
dim = 4: Take a D2 bundle over S2 and attach a D4 along the boundary to obtain a closed
4-manifold. Such bundles are classified by an element of π1SO(2) ∼= Z, i.e. the Euler number
e. To attach D4 we need the boundary to be S3, which only occurs when e = ±1. Since
diff(S3) ∼= SO(4) (the Smale conjecture) is connected, there is an essentially unique way
to attach D4, and one can show that the result is always CP2.

dim = 8: Now we take a D4 bundle over S4 and try to attach D8 to get a closed 8-manifold.
Such a bundle is classified by its clutching function, an element of π3SO(4) ∼= Z⊕Z. Recall
the special isomorphism

(SU(2)× SU(2)) /(Z/2) ∼= SO(4),

given by letting the first SU(2) ∼= S3 factor act on S3 by left multiplication and the second
factor act by right multiplication. A general element of π3SO(4) can thus be written as
fij : S3 → SO(4), where

fi,j(x)y = xiyxj.

Question 1.2 When does N7
i,j := ∂(D4 ×fi,j S

4) have the homotopy type of S7?

The answer turns out to be: precisely when i+ j = ±1 (note: we will be cavalier with signs
throughout).
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Question 1.3 When is N7
i,1−i diffeomorphic to S7?

If ∂N7
i,1−i were diffeomorphic to S7, we could attach D8 to form a closed 8-manifold M8

i,j. By
basic properties of Pontryagin classes, p1(Mi,j) = p1(D

4 ×fi,j S
4) ∈ Z (here we’re implicitly

evaluating on the generator in H4). One can compute:

p1(Mi,j) = p1(Mi,j) = 2(i− j),
and hence

p1(Mi,1−i) = 4(2i− 1)2.

On the other hand, the Hirzebruch signature theorem in this dimension gives

Sig(Mi,1−i) =
1

45
(7p2 − p21).

Clearly SigM = 1 and therefore

p2 =
4(2i− 1)2 + 45

7
.

• For i = 1, we get p2 = 7, consistent with the fact that M1,0
∼= HP2, the quaternionic

projective plane.

• For i − 2, we get p2(M2,−1) = 81/7, which is impossible. Conclusion: M2,−1 doesn’t
exist, and N7

2,−1 must be an exotic 7-sphere!

2 Reduction to handlebodies

We now fast-forward to the 1960’s. Between Milnor’s discovery and the present work of Wall,
Smale proved the h-cobordism theorem. Actually, he really proved something stronger.

Theorem 2.1 (Smale) Let M b be a closed C∞ manifold which is (a − 1)-connected, with
b ≥ 2a and (b, a) 6= (4, 2). Then M admits a self-indexing Morse function (i.e. critical
values correspond to Morse indices) with

• a unique local minimum and a unique local maximum

• no index i critical points for 0 < i < a and b− a < i < b.

Let M2n be an (n − 1)-connected manifold and let M2n
0 := M2n \ intD2n denote the result

after removing a top-dimensional disk. Applying the above result, we get

M2n
0
∼= D2n ∪H1 ∪ ... ∪Hr,

where the Hi
∼= Dn ×Dn are n-handles attached via disjoint embeddings fi : ∂Dn ×Dn ↪→

∂D2n. We refer to a manifold of this form as a “handlebody” Here the actual data of M2n
0

consists of:

• disjointly embedded Sn−1’s with a “linking matrix” describing how they are pairwise
linked

• a framing for each handle.
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3 Intrinsic description of a handlebody

We now give a more intrinsic description of the handlebody M0 and use this to classify
handlebodies up to diffeomorphism. We have

• Hn(M0) ∼= Zr is the only interesting homology group.

• Hn is equipped with an n-symmetric bilinear form1, possibly degenerate.

• By Hurewicz: Hn(M0) ∼= πn(M0).

• By a result of Haefliger: each element of πn(M0) has an embedded representative,
unique up to isotopy (at least for n ≥ 4)

• Considering the clutching function of such a representative, we get a map

α : Hn(M0)→ πn−1(SO(n)).

The above map α will play an important role. As we now explain, it satisfies some
relations. First we need to recall a first classical items from algebraic topology.

• Associated to the fibration sequence SO(n) → SO(n + 1) → Sn there is a long exact
sequence

1n ∈ πn(Sn) ∂ // πn−1(SO(n)) S // πn−1(SO(n+ 1))

• Let J : πr(SO(n)) → πn+r(S
n) be the J homomorphism. We quickly recall the defi-

nition. View an element q ∈ πr(SO(n)) as a map Sr × Sn−1 → Sn−1. Passing to the
join, this induces a map Sr ∗ Sn−1 → S(Sn−1), i.e. a map Sn+r → Sn.

• Let H : π2n−1(S
n) → Z be the Hopf invariant. Recall: the Hopf invariant of f :

S2n−1 → Sn corresponds to the unique interesting cup product relation in D2n ∪f Sn.

Lemma 3.1 The map α satisfies the relations

• x2 = HJα(x) (∈ Z)

• α(x+ y) = α(x) + α(y) + (x · y)(∂1n) (∈ πn−1(SO(n)))

Note that α is not a homomorphism. One can view ∂1n as some distinguished element of
πn−1(SO(n)) which satisfies HJ∂1n = 2 for n even.

Proof sketch of lemma:

1Here n-symmetric means either symmetric or skew-symmetric, depending on the parity of n.
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• HJ : πn−1(SO(n)) → Z can be identified with the map πn−1(SO(n)) → πn−1(S
n−1)

induced by evaluation at a point. Thus HJα(x) is the obstruction to finding a section
of the normal bundle of an embedded representative of x ∈ Hn(M0), which is precisely
x · x ∈ Z.

• For two embedded spheres with corresponding normal bundles α(x) and α(y), we can
form the ambient connected sum. It would have normal bundle representing α(x+ y),
except that it is generally only immersed. In fact, the signed count of self-interection
points corresponds exactly to x · y. We can now resolve each self-intersection point at
the price of changing the normal bundle by ∂1n. Since the result is embedded, the
second part of the lemma follows.

In summary, handlebodies are classified up to diffeomorphism by the data:

• H a free Abelian group

• H ⊗H → Z an n-symmetric product

• α : H → πn−1(SO(n)) a map satisfying

x2 = HJα(x) (∗)
α(x+ y) = α(x) + α(y) + (xy)(∂1n) (∗∗)

We will refer to such data as an “algebraic handlebody”.

Remark 3.2 At first glance algebraic handlebodies might look like rather simple creatures,
but note that, for n even, H is equipped with an integral quadratic form. Thus classifying
algebraic handlebodies is at least as hard as classifying integral quadratic forms, which is an
extremely difficult open problem.

4 Closing the handlebody

Our goal is now to get a closed manifold M2n by gluing a disk D2n to the boundary of the
handlebody M2n

0 . Note: for this to work we need ∂M2n
0 to be diffeomorphic to the standard

smooth sphere S2n−1.

Lemma 4.1

Hi(∂M
2n
0 ) =


0 for i 6= 0, n− 1, 2n− 1, n
coker π for i = n− 1
kerπ for i = n

Here π : H → H∗ is given by π(x)(y) = x · y (i.e. the adjoint), where H := Hn(M0) and H∗

is its dual vector space.

Corollary 4.2 ∂M0 is a homotopy sphere if and only if π is an isomorphism.
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Note that a simply connected homology sphere is a homotopy sphere by the Hurewicz theo-
rem, and it is in fact homeomorphic to a sphere by the topological Poincaré conjecture.

Corollary 4.3 Handlebodies with boundary homeomorphic a standard sphere are in one-to-
one correspondence with algebraic handlebodies such that H ⊗ H → Z is unimodular (i.e.
the matrix for it has unit determinant).

Remark 4.4 It is easy to check that performing a boundary connected sum of two handle-
bodies corresponds to taking a direct sum of two algebraic handlebodies.

Corollary 4.5 There is an additive map: {handlebodies} → Γ2n−1 which sends M0 to ∂M0.

Here Γk denotes the group of exotic k-spheres under connected sums. There is a purely formal
way of upgrading this additive map into a group homomorphism by turning the domain into
a group. Let Gn denote the Grothendieck group of handlebodies, i.e. the free Abelian group
generated by isomorphism classes of algebraic handlebodies, quotiented by all relations of
the form H1 ⊕H2 −H1 −H2. We now have a group homomorphism

b : Gn → Γ2n−1.

We’d like to understand the kernel of b.

Remark 4.6 Even if ∂M0 is diffeomorphic to S2n−1, there is still ambiguity about how to
glue in D2n to form M . Following Wall, we will ignore this ambiguity in this talk, so M will
only be determined up to connect-summing with an element of Γ2n.

To proceed, we must compute πn−1(SO(n)). This is not quite a stable homotopy group
but it was nonetheless computed by Kervaire. Unfortunately there are seven different cases
to consider! For simplicity, we consider just two of them.

• Case A: n ≡ 3, 5, 7 mod 8, and n 6= 3, 7.

• Case B: n ≡ 6 mod 8.

4.1 Case A

In Case A, πn−1(SO(n)) ∼= Z/2.

• H ⊗H → H is skew-symmetric and unimodular, hence classified by its rank r.

• α : H → Z/2 satisfies α(x+ y) = α(x) + α(y) + xy.

• Let e1, e
′
1, e2, e

′
2, ... be a symplectic basis for H (i.e. eie

′
i = −e′iei = 1 and eiej = 0

otherwise).

It turns out that in this case α is completely classified by its Z/2-valued Arf invariant,
Arf(H,α) :=

∑
i α(ei)α(e′i) mod 2. Checking that Arf(H,α) is actually a well-defined in-

variant (independent of the chosen symplectic basis) is a straightforward but somewhat
unenlightening algebraic exercise.

So in Case A, unimodular algebraic handlebodies are classified by rank(H)/2 and Arf(H,α).
In particular, Gn ∼= Z⊕ Z/2.
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4.2 Case B

In Case B, H ◦ J : πn−1(SO(n)) → Z is injective with index 2. The relation (∗) gives
x2 = HJα(x). By the above properties of HJ , it follows that x2 is always even. Moreover,
α is uniquely determined by x2.

Recall that an integral quadratic form H ⊗ H → Z such that x · x is always even is
said to be “type II”. We have that unimodular algeabraic handlebodies are in one-to-one
correspondence with type II unimodular quadratic forms. Although the latter creatures
are unclassified, one can still establish the following theorem using some deep facts about
quadratic forms.

Theorem 4.7 Gn ∼= Z ⊕ Z, given by

(
rank− sig

2
,

sig

8

)
. Here sig denotes the signature,

which is always divisible by 8 for type II quadratic forms.

In particular, the quantities
rank− sig

2
and

sig

8
determine whether or not M0 can closed

up.

5 Obstruction to closing

In Case A, Kervaire showed that ∂M0 is a standard sphere if and only if Arf = 0.
In Case B, the boundary is standard if and only the following quantity vanishes:

sig/8 mod
2n−3(2n−1 − 1)Bn/2jn/2an/2

n
,

where

• Bi = Bernoulli number

• ai = 2 for i odd and 1 for i even

• ji is the order of the image of the stable J-homomorphism J : π4i−1(SO)→ πS
4i−1.

Remark 5.1 The quantity ji was only computed about a decade after Wall’s paper was
published.

Remark 5.2 A unimodular algebraic handlebody always uniquely closes up to an (n − 1)-
connected PL manifold. On the other hand, when the above obstruction quantity is nonzero,
we get a PL manifold with no smooth structure (in fact, it is not even homotopy equivalent to
a smooth manifold!). The first such example was discovered with n = 10 by Kervaire around
1960. Namely, he found a PL manifold with nonzero Arf invariant, and hence no smooth
structure.
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