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1 Introduction

Recall that mirror symmetry predicts the existence of pairs X, X̌ of Calabi-Yau manifolds
whose Hodge diamonds are mirror images of each other, i.e. Hq(X,ΛpTX) ' Hq(X̌,ΩpX̌).
In fact, mirror symmetry reflects much more than just the Hodge structures, and we also
get an isomorphism between the “Yukawa couplings” on H1(X,TX) and H1,1(X̌), which
give product structures H1(X,TX)⊗H1(X,TX)→ H1(X,TX) and H1,1(X̌)⊗H1,1(X̌)→
H1,1(X̌). The coupling on H1(X,TX) is defined in terms of Gromov-Witten invariants of
X and often contains deep enumerative information about X. For example, when X is the
quintic threefold, it is much easier to calculate the Yukawa couplings for the mirror X̌, and
mirror symmetry then gives astonishing formulas for the number of degree d rational curves
on X, for all d.

We aim to give a more refined statement of mirror symmetry in terms of the complex
and Kahler moduli spaces of X and X̌ respectively. Let Mcx(X) and Mkah(X̌) denote the
complex and Kahler moduli spaces of X and X̌ respectively. The former is defined to be the
moduli space of complex structures on X. Assuming h2,0(X̌) = 0, the latter can be defined
in terms of the Kahler cone K(X̌) ⊂ H2(X̌,R) consisting of all Kahler classes. Namely,
we defineMkah(X̌) to be KC(V )/Aut(X̌), where KC(X̌) is the “complexified Kahler space”
given by

KC(X̌) = {ω ∈ H2(X̌,C) | Im(ω) ∈ K(X̌)}/imH2(X̌,Z).

The goal of this talk is to discuss the following statement of mirror symmetry:

Conjecture 1.1 Let X → (D∗)s be a family of Calabi-Yau 3-folds with a large complex
structure limit (LCSL) point at 0. Then there is another Calabi -Yau 3-fold X̌ and a choice
of bases

α0, ..., αs, β0, ..., βs for H3(X,Z)

e1, ..., e3 on H2(X̌,Z)
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giving rise to a locally defined map

m :Mcx(X)→Mkah(X̌),

(q1, ..., qs) 7→ (q̌1, ..., q̌s),

such that the Yukawa couplings match:〈
∂

∂qi
,
∂

∂qj
,
∂

∂qk

〉
p

=

〈
∂

∂q̌i
,
∂

∂q̌j
,
∂

∂q̌k

〉
m(p)

.

Here the LCSL condition essentially corresponds to a complexified Kahler form [B + iω]
for ω sufficiently positive. We will show that the bases give rise to local coordinates qi and
q̌i on Mcx(X) and Mkah(X̌) and thus the map m.

Example 1.2 Consider the family of elliptic curves

Ct = {y2z = x3 + x2z − tz3} ⊂ CP2.

Note that Ct is smooth for t 6= 0, and C0 has a nodal singularity. As t travels around
the origin, the monodromy is a Dehn twist around a vanishing cycle. The induced map on

homology H1(Ct0) ' Z2 = 〈a, b〉 is given by

(
1 1
0 1

)
.

Using period integrals, we replace the ad hoc parameter t with a natural local coordinate
q for the family. First, equip each Ct with a holomorphic volume form Ωt such that, for each
t, ∫

a

Ωt = 1.

Now let

τ(t) =

∫
b

Ωt.

Abstractly, we have Ct ' C/(Z + τ(t)Z). As t goes around the origin, τ(t) goes to τ(t) +∫
a

Ωt0 = τ(t) + 1. Therefore q(t) := e2πiτ(t) is single-valued and gives a local coordinate for
the family. As t→ 0, Im τ(t)→∞ and q(t)→ 0. This is an example of a LCSL.

2 Deformations of Complex Structures

For a given Calabi-Yau manifold, we would like to study the local structure of the moduli
space of complex structures. To start, let (X, J) be an almost complex manifold. Recall
that we have a decomposition

TX ⊗ C = TX1,0
J ⊕ TX

0,1
J
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of the complexified tangent bundle of X into the i and −i eigenspaces respectively of J .
Note that for v ∈ TX ⊗ C, we have v = v1,0J + v0,1J , with v1,0J = 1

2
(v − iJv) ∈ TX1,0 and

v0,1J = 1
2
(v + iJv) ∈ TX1,0

J . Similarly, we have decompositions

T ∗X ⊗ C = T ∗X1,0
J ⊕ T

∗X0,1
J ,

ΛkT ∗X = ⊕p+q=kΩp,q
J (X).

Now for J ′ another almost complex structure close to J , we can view

Ω1,0
J ′ ⊂ T ∗X ⊗ C = Ω1,0

J ⊕ Ω0,1
J

as the graph of a linear map s : Ω1,0
J → Ω0,1

J . Conversely, for such an s sufficiently small we
can set

Ω1,0
J ′ := graph(s),

Ω0,1
J ′ := Ω1,0

J ′ ,

and then define the action of J ′ to be multiplication by i on Ω1,0
J ′ and by −i on Ω0,1

J ′ . Note
that s can also be viewed as a section of

(Ω1,0
J )∗ ⊗ Ω0,1

J ' T 1,0
J ⊗ Ω0,1

J .

Of course, we want the deformation J ′ to be integrable. Recall that the almost complex
structure J is integrable if and only if we have

[TX1,0, TX1,0] ⊂ TX1,0.

Note that the Dolbeaut complex for TX1,0
J on (X, J), namely ⊕qΩ0,q

X ⊗ TX1,0, carries a Lie
bracket given by

[α⊗ v, α′ ⊗ v′] := (α ∧ α′)⊗ [v, v′].

Using local coordinates, one can easily show:

Proposition 2.1 J ′ is integrable if and only if ∂s+ 1
2
[s, s] = 0.

Recall that we also need to quotient by Diff(X). Let φ be a diffeomorphism of X which is
close to the identity. We first remark that for {zi} local holomorphic coordinates for (X, J),
one can check that a basis for the (1, 0)-forms corresponding to J ′ is given by

{dzi − s(dzi)}.

Decomposing dφ into parts which commute and anticommute with J :

dφ = ∂φ+ ∂φ,
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we therefore have

φ∗dzi = dzi ◦ ∂φ+ dzi ◦ ∂φ = (dzi ◦ ∂φ) ◦ (Id + (∂φ)−1∂φ),

and hence corresponding to φ∗J we have

s = −(∂φ)−1∂φ.

Putting this all together, consider a deformation J(t) of J with J(0) = J , corresponding
to s(t) = ts1 + t2s2 + t3s3 + ... ∈ Ω0,1(X,TX1,0). Assuming the family J(t) is integrable, the
equation

∂s(t) +
1

2
[s(t), s(t)] = 0

gives

1

2
[ts1 + t2s2 + ..., ts1 + t2s2 + ...] + t∂s1 + t2∂s2 + ... = 0.

In particular, the first order part in t gives

∂s1 = 0.

On the other hand, if φt is a family of diffeomorphisms of X with φ0 = Id, we have

d

dt

∣∣∣∣
t=0

(−(∂φt)
−1∂φt) = − d

dt

∣∣∣∣
t=0

(∂φt) = −∂v,

where v ∈ Γ(TX) is the vector field generating the family φt. In other words, first order
deformations of (X, J) correspond to

Ker(∂ : Ω0,1(X,TX1,0)→ Ω0,2)

Im(∂ : C∞(X,TX1,0)→ Ω0,1)
= H1(X,TX1,0).

Moreover, if (Xn, J) is Calabi-Yau with Ω a holomorphic volume form, then Ω gives an
identification TX1,0 ' ∧n−1T ∗X, and therefore we have

H1(X,TX1,0) ∼= H1(X,∧n−1T ∗X) ∼= Hn−1,1(X, J).

A priori there may be obstructions to finding the higher order parts of s(t). Namely, we
must have

∂s2 +
1

2
[s1, s2] = 0,

∂s3 + [s1, s2] = 0,

∂s4 + [s1, s3] +
1

2
[s2, s2],

etc, and so there are obstructions lying in H2(X,TX). Happily, we have

Theorem 2.2 (Bogomolov-Tian-Todorov) For X a compact Calabi-Yau with H0(X,TX) =
0, deformations of X are unobstructed.
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3 The Hodge Bundle

Partly for convenience, we now focus on three dimensional Calabi-Yau manifolds. In this case,
the cohomology groups H3(X;C) glue together to form a bundle H, the Hodge bundle, over
the moduli space of complex structures. The Calabi-Yau forms, unique up a constant, form
a line sub-bundle of the Hodge bundle. Moreover, by declaring integer cohomology classes
to be flat sections, we get a connection the Hodge bundle, the Gauss-Manin connection.

It turns out that the position of the Calabi-Yau form (up to scaling) in H3 (locally)
determines the complex structure. We can think of the Calabi-Yau form as determining a
point in Ph3−1, where h3 is the dimension of H3. Since the dimension of Mcx(X) is only
h2,1 = 1

2
h3 − 1, this description of the complex structure is redundant. To find sharper

coordinates on Mcx(X), we first define a natural Hermitian metric (·, ·) on H by

(θ, η) = i

∫
θ ∧ η, θ, η ∈ H3(M,C).

Then we can find a “symplectic basis” of real integer three-forms αa, β
b, a, b = 1, ..., h3/2,

such that

(αa, αb) = (βa, βb) = 0

(αa, β
b) = iδba,

with dual basis Aa, Bb, a, b = 1, ..., h3/2.

4 Periods and Coordinates on Moduli Space

We first discuss the coordinates on Mkah(X̌). If ei is a basis for H2(X̌,Z) with each ei in
the Kahler cone, we get local coordinates q̌i on Mkah(X̌) by setting

[B + iω] =
∑
i

ťiei,

q̌i = exp(2πiťi) ∈ C∗.

Now to construct coordinates on Mcp(X), let Ω be a Calabi-Yau form. We consider the
“period integrals”

za =

∫
Aa

Ω, ωb =

∫
Bb

Ω.

It turns out that the complex structure is locally determined by just the za. In fact, there
are h3/2 of them, while the moduli space is only of dimension h2,1 = h3/2− 1. However, the
Calabi-Yau form Ω is only well-defined up to scaling, so we view the za as homogenous local
coordinates.
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Now suppose X → (D∗)s is a LCSL. If hn−1,1 = s = 1, this equivalent to the monodromy
φ∗ ∈ Aut(Hn(Xt0 ,Z)) around 0 being maximally unipotent, i.e.

(φ∗ − Id)k = 0

for k = n + 1 but not for k < n + 1. For s > 1 there is a more involved definition in terms
of the Jordan decompositions of the various induced monodromy actions on Hn(Xt0 ,Z))
corresponding to loops in (D∗)s. Let Ω be such that

∫
B0

Ω = 1. Then setting qi = exp(2πiωi)
defined canonical coordinates qi on (D∗)s (which of course are only canonical after a basis is
chosen).

5 Yukawa Couplings

On the A side, the Yukawa couplings are given as follows. For ω1, ω2, ω3 ∈ H1,1(X̌),

〈ω1, ω2, ω3〉 :=

∫
X

ω1 ∧ ω2 ∧ ω3 +
∑

06=β∈H2(X,Z)

nβ

∫
β

ω1

∫
β

ω2

∫
β

ω3
e2πi

∫
β ω

1− e2πi
∫
β ω
,

where nβ is defined in terms of Gromov-Witten invariants and is roughly the “number of
holomorphic spheres in X̌ of class β”. The numbers nβ contain deep information about the
arithmentic properties of X̌.

On the B side, the Yukawa coupling for 〈θ1, θ2, θ3〉 ∈ H1(X,TX) is given by

〈θ1, θ2, θ3〉 :=

∫
X

Ω ∧ (θ1 · θ2 · θ3 · Ω),

using the composition

S3H1(X,TX)⊗H0(X,Ω3X)→ H3(X,Λ3TX ⊗ Ω3X) ' H3(X,OX) ' H0,3(X).

Equivalently, this is ∫
X

Ω ∧ (∇θ1∇θ2∇θ3Ω),

where ∇ is the Gauss-Manin connection.

Remark 5.1 Using za and ωb, we define the “prepotential” G:

G := zaωa.

Then using G we can recover the Yukawa couplings

κa,b,c = 〈χa, χb, χc〉,

where χa is the (2, 1) part of ∂aΩ (considered as an element of H1(TM), by

κa,b,c = ∂a∂b∂cG.
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6 Mirror Symmetry for the Quintic Threefold

Let V ⊂ CP4 be a smooth quintic hypersurface, i.e. the zero set of a homogeneous degree 5
polynomial. Then V is Calabi-Yau. If H denotes the hyperplane class, the A-model Yukawa
coupling formula becomes

〈H,H,H〉 = 5 +
∞∑
d=1

ndd
3 qd

1− qd

where q = exp(2πi
∫
l
ω), l is a line in V , and ω = B + iJ is a complexified Kahler class on

V . The first few values of nd are given by

n1 = 2, 875

n2 = 609, 250

n3 = 317, 206, 375

n4 = 242, 467, 530, 000,

etc.

Remark 6.1 Although nd is indeed the number of rational curves of degree d in V for d ≤ 9,
in general the enumerative content of nd is more subtle. In particular, n10 does not give the
number of degree 10 rational curves on V , as double covers of nodal rational curves contribute
more than expected.

One of the most striking early applications of mirror symmetry to mathematics was the
computation of the above expression using the B-model couplings on the mirror of V . In
this last section we explain the mirror of V and how to get the mirror map.

Recall that the Hodge diamond of V is given by h1,1(V ) = 1 and h2,1(V ) = 101. Therefore
the mirror V̌ should satisfy h2,1(V̌ ) = 1 and hence live in a one-parameter family of Calabi-
Yau manifolds. We describe it as a resolution of singularities of a family of hypersurfaces in
CP4/G, where

G = {(a1, ..., a5) ∈ (Z/5)5 |
∑
i

ai ∼= 0 mod 5}/(Z/5),

and g = (a1, ..., a5) acts by

g · (x1, ..., x5) = (µa1x1, ..., µ
a5x5)

for µ = exp(2πi/5).
With parameter ψ, the hypersurfaces are defined by

x51 + ...+ x55 + ψx1x2x3x4x5 = 0.
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These hypersurfaces inherit singularties from CP4/G, and we let V̌ψ be the result after
simultaneously resolving the singularities. Now we observe that the map

(x1, ..., x5) 7→ (µ−1x1, x2, ..., x5)

induces an isomorphism V̌ψ ' V̌µψ, and ψ5 is well-defined on the moduli space of complex
structures on V̌ψ. We set x = ψ−5 as a local coordinate for the complex moduli. The
singularities of V̌ψ occur for ψ = −5µi, 0 ≤ i ≤ 4, and for ψ =∞. In terms of x, they occur
for x = −5−5 and x = 0.

Now since H generates H2(V,Z), we can write any complexified Kahler class as ω = tH
for t in the upper half plane. Since KC(V ) is the quotient of KC(V ) by H2(V,Z), setting
q = exp(2πit) gives an isomorphism

q : KC(V ) ' ∆∗.

It turns out that the limit point 0 ∈ ∆ corresponds to a LCSL. In the complex structure
moduli space, the point x = 0 has maximally unipotent monodromy and therefore should
be the image of q = 0.

However, the mirror map Mkah(V ) →Mcx(V̌ ) is not given by q = x. Rather, we put a
coordinate q̌ on V̌ as follows. We claim that there is a minimal integral vanishing cycle γ0
near x = 0 such that γ0 is invariant under monondromy, and that there is a minimal integral
cycle γ1 which transforms under the monodromy about x = 0 by γ1 7→ γ1 + γ0. Then for Ω
a holomorphic 3-form, monodromy around x = 0 gives the transformation∫

γ1

Ω/

∫
γ0

Ω 7→
∫
γ1

Ω/

∫
γ0

Ω + 1,

and we set

q̌ = exp(2πi

∫
γ1

Ω/

∫
γ0

Ω).

Then q and q̌ correspond under the mirror map.

Remark 6.2 In order to equate the Yukawa couplings, the next step would be to find an
expression for q̌ in terms of x. To do this, we can use the fact that

∫
γ0

Ω and
∫
γ1

Ω are
periods and therefore satisfy a Picard-Fuchs equation of the form

y′′′′ + f1y
′′′ + f2y

′′ + f3y
′ + f4y = 0,

for the fi functions of x and differentation taken with respect to x. This comes from the fact
that h3(V̌ ) = 4 and hence any 5 sections of the Hodge bundle must be linearly dependent.
Using techniques from ordinary differential equations, we ultimately find that

q̌ = −(x− 770x2 + ...).
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