Introduction to the h-Principle

Kyler Siegel

May 15, 2014

Contents

1	Introduction	1
2	Jet bundles and holonomic sections	2
3	Holonomic approximation	3
4	Applications	4

1 Introduction

The goal of this talk is to give a basic introduction to h-principle and some of the ideas involved in its proof, with a primary focus on Gromov's h-principle for contact structures on open manifolds. To illustrate the h principle, we begin with an example, one of the first h-principles discovered.

Theorem 1.1 Smale, Hirsch '59 The natural map

{immersions $V \to W$ } \hookrightarrow {fiberwise injective bundle maps $TV \to TW$ },

is a homotopy equivalence, where V^n and W^q are smooth manifolds with n < q.

Note that, in particular, this theorem characterizes immerions up to regular homotopy in terms of homotopy classes of bundle maps.

Remark 1.2 The condition n < q is essential and is a typical hypothesis in h-principles.

Figure 1: A typical section of $J^1(\mathbb{R},\mathbb{R})$

2 Jet bundles and holonomic sections

Given a fiber bundle $X \to V$, we can construct another fiber bundle $J^r(X) \to X$ (which is evidently also a bundle over V), with the fiber of $J^r(X)$ over $p \in V$ given by

{sections $\in C^{\infty}(\mathcal{O}p(p), X)$ }/ ~,

where for $F: U \to X$, $G: V \to X$, we declare $F \sim G$ if, in local coordinates, F and G have the same *r*th order Taylor polynomials at p. Recall that $\mathcal{O}p(p)$ denotes a small, unspecified neighborhood of p.

Notation 2.1 For smooth manifolds V, W, we set $J^r(V, W) := J^r(V \times W)$, thinking of $V \times W$ as the trivial bundle $V \times W \to V$.

Example 2.2 • $J^0(X) = X$

• $J^1(V, \mathbb{R}) = \mathbb{R} \times T^*V$

•
$$J^1(V,W) = \{(p,q,P) : p \in V, q \in W, P \subset T_pV \times T_qW, P \cap T_qW = \{0\}\}$$

- A typical section of $J^1(\mathbb{R},\mathbb{R})$ is portrayed in Figure 1.
- $J^r(\mathbb{R}^n, \mathbb{R}^q) \approx \mathbb{R}^n \times \mathbb{R}^q \times \mathbb{R}^{qd_1} \times \mathbb{R}^{qd_2} \times \ldots \times \mathbb{R}^{qd_r}$, where $d_i = \frac{(n+i-1)!}{(n-1)!i!}$.

There is a tautological association

given essentially by taking derivatives.

Definition 2.3 A section of $J^r(X) \to V$ is called holonomic if $F = J^r_{bs F}$, where bs F denotes the underlying section of $X \to V$.

Notation 2.4 We will use be to denote the projection map $bs : J^r(X) \to X$ as well as the induced map on sections $bs : sec(J^r(X)) \to sec(X)$.

Example 2.5 • An arbitrary section of $J^3(\mathbb{R}, \mathbb{R})$ is of the form $x \mapsto (x, f(x), g(x), h(x), k(x))$.

• A holonomic section of $J^3(\mathbb{R}, \mathbb{R})$ is of the form $x \mapsto (x, f(x), f'(x), f''(x), f''(x))$.

3 Holonomic approximation

Our desire is to approximate a section F of $J^r(X) \to V$ by a holonomic one.

Futile Example 3.1 Let F be the section of $J^1(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$ given by F(x) = (x, x, 0). A holonomic approximation would be a function f(x) with $|f'(x)| < \epsilon$ and $|f(x) - x| < \epsilon$.

Example 3.2 Near a point $p \in V$, we can always approximate $F|_{\mathcal{O}p(p)}$ by the Taylor polynomial specified by F(p), which is holonomic.

Question 3.3 Can we always holonomically approximate F near a 1-cell?

Futile Example 3.4 Consider the section F of $J^1(\mathbb{R}^2, \mathbb{R}) \to \mathbb{R}^2$ given by

$$F(x_1, x_2) = (x_1, x_2, f(x_1, x_2), 0, 0),$$

with $f(x_1, x_2) = x_1$. Consider the problem of finding a holonomic approximation of F near $I := \{(x_1, 0) : 0 \le x_1 \le 1\} \subset \mathbb{R}^2$. A little thought shows that this is impossible, for essentially the same reason as before.

Key idea: if we are allowed to replace the 1-cell I by some C^0 -close 1-cell I', then we can holonomically approximate F on $\mathcal{O}p(I')$!

Theorem 3.5 (Holonomic Approximation) Let $A \subset V$ be a polyhedron of positive codimension and let $F : \mathcal{O}p(A) \to J^r(X)$ be a section. Then for any $\epsilon > 0$, there exists an ϵC^0 -small diffeotopy $h^t : V \to V$, $t \in [0, 1]$, and a holonomic section $\tilde{F} : \mathcal{O}p \ h^1(A) \to J^r(X)$ such that $dist(\tilde{F}(v), F(v)) < \epsilon$ for all $v \in \mathcal{O}p \ h^1(A)$.

There is also *parametric* version, which is essentially the same result but with some extra parameters floating around.

Theorem 3.6 (Parametric Holonomic Approximation) Let $A \subset V$ be a polyhedron of positive codimension and suppose we have sections

$$F_z: \mathcal{O}p \ A \to J^r(X), \quad z \in I^m$$

with F_z holonomic for all $z \in \mathcal{O}p \ \partial I^m$ (here I^m denotes the m-dimensional unit cube). Then for any $\epsilon > 0$, there exists a family of $\epsilon \ C^0$ -small diffeotopies $h_z^t : V \to V$, $t \in [0, 1]$, $z \in I^m$, and holonomic sections $\tilde{F}_z : \mathcal{O}p \ h_z^1(A) \to J^r(X), z \in I^m$, such that

- $h_z^t = id_V$ and $\tilde{F}_z = F_z$ for all $z \in \mathcal{O}p \ \partial I^m$
- $dist(\tilde{F}_z(v), F_z(v)) < \epsilon \text{ for all } v \in \mathcal{O}p \ h_z^1(A), \ z \in I^m.$

Remark 3.7 There is also a relative version, where F is already holonomic near a subpolyhedron B, and h is the identity and $\tilde{F} = F$ on $\mathcal{O}p(B)$.

4 Applications

Let V^{2n+1} be an open manifold (i.e. every component is either noncompact or has nonempty boundary). Here is the main result we are interested in.

Theorem 4.1 (Gromov) The natural map

{cooriented contact structures on V} \hookrightarrow {cooriented almost contact structures on V}

is a homotopy equivalence.

Here the set on the right hand side can be identified with the set of pairs (ξ_+, ω) such that ξ_+ is a cooriented hyperplane distribution on V and ω is a positive conformal class of symplectic structures on ξ_+ .

Proof There is a bundle homomorphism $D: J^1(\Lambda^1 V) \to \Lambda^2 V$, called the "symbol of d", such that the composition

$$\operatorname{sec}(\Lambda^1 V) \longrightarrow \operatorname{sec}(J^1(\Lambda^1 V)) \longrightarrow \operatorname{sec}(\Lambda^2 V)$$

of J^1 and the map \tilde{D} on sections induced by D gives the usual exterior derivative

$$d: \sec(\Lambda^1 V) \to \sec(\Lambda^2 V).$$

Remark 4.2 In local coordinates, the fiber of $J^1(\Lambda^1 V)$ is $M_n(\mathbb{R})$, the fiber of $\Lambda^2 V$ is the set of skew-symmetric $n \times n$ matrices, and $D(A) = A - A^T$.

Remark 4.3 Given $(\alpha, \beta) \in \Lambda^1 V \oplus \Lambda^2 V$, we can always find $F \in \text{sec}(J^1(\Lambda^1 V))$ such that $(\alpha, \beta) = (bs \ F, \tilde{D}F)$. In particular, a cooriented almost contact structure gives rise to a section of $J^1(\Lambda^1 V)$ (and in fact the space of such lifts is contractible).

Consider the projection $bs: J^1(\Lambda^1 V) \to \Lambda^1 V$. Let $\mathcal{R}_{\text{cont}} \subset J^1(\Lambda^1 V)$ be given by

$$\mathcal{R}_{\text{cont}} = \{ x \in J^1(\Lambda^1 V) : bs(x) \land (Dx)^n \neq 0 \}$$

(here dim X = 2n + 1).

Surjectivity on π_0 : Let F be a section of $J^1(\Lambda^1 V) \to \Lambda^1 V$ with image in $\mathcal{R}_{\text{cont}}$.

Fact 4.4 The open manifold V contains a polyhedron $K \subset V$ of positive codimension such that V can be retracted by an isotopy $\phi_t : V \to V$, $t \in [0,1]$, into an arbitrarily small neighborhood of K.

Indeed, triangulate V. Pick disjoint paths from the barycenter of each (2n + 1)-simplex to ∞ (i.e. the path either ends in the boundary of V or exits every compact subset). Use these paths to isotope V into the complement of the barycenters of all (2n + 1)-simplices. Finally, retract each punctured (2n + 1)-simplex to a neighborhood of its boundary.

Now let $K \subset V$ be a polyhedron as in the fact above. Holonomic approximation gives

- a diffeotopy $h^t: V \to V, t \in [0, 1]$
- a holonomic section \tilde{F} of $J^1(\Lambda^1 V)$ on $\mathcal{O}p \ h^1 K$, C^0 -close to $F|_{\mathcal{O}p \ h^1 K}$.

Notation 4.5 Let $(\alpha, \beta) = (bs \ F, DF)$ and $(\tilde{\alpha}, d\tilde{\alpha}) = (bs \ \tilde{F}, D\tilde{F})$.

By openness of $\mathcal{R}_{\text{cont}}$ and C^0 -proximity, we can assume $(\tilde{\alpha}, d\tilde{\alpha})$ lies in $\mathcal{R}_{\text{cont}}$, as does the linear homotopy (over $\mathcal{O}p h^1(K)$) (α_t, β_t) from (α, β) to $(\tilde{\alpha}, d\tilde{\alpha})$.

Let $g_t: V \to V$ be an isotopy compressing V into $\mathcal{O}p h^1(K)$. Then

- $g_1^*(\tilde{\alpha}, d\tilde{\alpha})$ is a holonomic section of $J^1(\Lambda^1 V)$ with image in $\mathcal{R}_{\text{cont}}$
- the concatenation of the homotopies $g_t^*(\alpha, \beta)$ and $g_1^*(\alpha_t, \beta_t)$ gives a homotopy from (α, β) to $g_1^*(\tilde{\alpha}, d\tilde{\alpha})$ in $\mathcal{R}_{\text{cont}}$.

Finally, for injectivity on π_0 and for higher homotopy groups we simply mimick the above argument parametrically and apply the parametric holonomic approximation theorem.

Remark 4.6 Similar techniques prove an h-principle for symplectic forms (in a fixed cohomology class) on open manifolds.

In fact, Gromov abstracted the main ideas in the above proof to prove the following general h-principle for open manifolds.

Theorem 4.7 (Gromov) Let V be an open manifold and $X \to V$ a fiber bundle with a natural action of diff(V) on X. Let $\mathcal{R} \subset J^r(X)$ be an open, diff(V)-invariant subset. Then the inclusion

hol sec
$$\mathcal{R} \hookrightarrow sec \ \mathcal{R}$$

is a homotopy equivalence.

References

[EM] Y. Eliashberg and Nikolai M. Mishachev. Introduction to the h-principle. Number 48. American Mathematical Soc., 2002.