Introduction to the h-Principle

Kyler Siegel

May 15, 2014

Contents

1 Introduction 1
2 Jet bundles and holonomic sections 2
3 Holonomic approximation 3
4 Applications 4

1 Introduction

The goal of this talk is to give a basic introduction to h -principle and some of the ideas involved in its proof, with a primary focus on Gromov's h-principle for contact structures on open manifolds. To illustrate the h principle, we begin with an example, one of the first h-principles discovered.

Theorem 1.1 Smale, Hirsch '59 The natural map

$$
\{\text { immersions } V \rightarrow W\} \hookrightarrow\{\text { fiberwise injective bundle maps } T V \rightarrow T W\},
$$

is a homotopy equivalence, where V^{n} and W^{q} are smooth manifolds with $n<q$.
Note that, in particular, this theorem characterizes immerions up to regular homotopy in terms of homotopy classes of bundle maps.

Remark 1.2 The condition $n<q$ is essential and is a typical hypothesis in h-principles.

Figure 1: A typical section of $J^{1}(\mathbb{R}, \mathbb{R})$

2 Jet bundles and holonomic sections

Given a fiber bundle $X \rightarrow V$, we can construct another fiber bundle $J^{r}(X) \rightarrow X$ (which is evidently also a bundle over V), with the fiber of $J^{r}(X)$ over $p \in V$ given by

$$
\left\{\text { sections } \in C^{\infty}(\mathcal{O} p(p), X)\right\} / \sim,
$$

where for $F: U \rightarrow X, G: V \rightarrow X$, we declare $F \sim G$ if, in local coordinates, F and G have the same r th order Taylor polynomials at p. Recall that $\mathcal{O} p(p)$ denotes a small, unspecified neighborhood of p.

Notation 2.1 For smooth manifolds V, W, we set $J^{r}(V, W):=J^{r}(V \times W)$, thinking of $V \times W$ as the trivial bundle $V \times W \rightarrow V$.

Example 2.2 - $J^{0}(X)=X$

- $J^{1}(V, \mathbb{R})=\mathbb{R} \times T^{*} V$
- $J^{1}(V, W)=\left\{(p, q, P): p \in V, q \in W, P \subset T_{p} V \times T_{q} W, P \cap T_{q} W=\{0\}\right\}$
- A typical section of $J^{1}(\mathbb{R}, \mathbb{R})$ is portrayed in Figure 1.
- $J^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{q}\right) \approx \mathbb{R}^{n} \times \mathbb{R}^{q} \times \mathbb{R}^{q d_{1}} \times \mathbb{R}^{q d_{2}} \times \ldots \times \mathbb{R}^{q d_{r}}$, where $d_{i}=\frac{(n+i-1)!}{(n-1)!i!}$.

There is a tautological association

given essentially by taking derivatives.

Definition 2.3 A section of $J^{r}(X) \rightarrow V$ is called holonomic if $F=J_{b s}^{r} F$, where bs F denotes the underlying section of $X \rightarrow V$.

Notation 2.4 We will use bs to denote the projection map bs: $J^{r}(X) \rightarrow X$ as well as the induced map on sections $b s: \sec \left(J^{r}(X)\right) \rightarrow \sec (X)$.

Example 2.5 - An arbitrary section of $J^{3}(\mathbb{R}, \mathbb{R})$ is of the form $x \mapsto(x, f(x), g(x), h(x), k(x))$.

- A holonomic section of $J^{3}(\mathbb{R}, R)$ is of the form $x \mapsto\left(x, f(x), f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)\right)$.

3 Holonomic approximation

Our desire is to approximate a section F of $J^{r}(X) \rightarrow V$ by a holonomic one.
Futile Example 3.1 Let F be the section of $J^{1}(\mathbb{R}, \mathbb{R}) \rightarrow \mathbb{R}$ given by $F(x)=(x, x, 0)$. A holonomic approximation would be a function $f(x)$ with $\left|f^{\prime}(x)\right|<\epsilon$ and $|f(x)-x|<\epsilon$.

Example 3.2 Near a point $p \in V$, we can always approximate $\left.F\right|_{\mathcal{O}_{p(p)}}$ by the Taylor polynomial specified by $F(p)$, which is holonomic.

Question 3.3 Can we always holonomically approximate F near a 1-cell?
Futile Example 3.4 Consider the section F of $J^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right) \rightarrow \mathbb{R}^{2}$ given by

$$
F\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right), 0,0\right),
$$

with $f\left(x_{1}, x_{2}\right)=x_{1}$. Consider the problem of finding a holonomic approximation of F near $I:=\left\{\left(x_{1}, 0\right): 0 \leq x_{1} \leq 1\right\} \subset \mathbb{R}^{2}$. A little thought shows that this is impossible, for essentially the same reason as before.

Key idea: if we are allowed to replace the 1-cell I by some C^{0}-close 1-cell I^{\prime}, then we can holonomically approximate F on $\mathcal{O} p\left(I^{\prime}\right)$!

Theorem 3.5 (Holonomic Approximation) Let $A \subset V$ be a polyhedron of positive codimension and let $F: \mathcal{O} p(A) \rightarrow J^{r}(X)$ be a section. Then for any $\epsilon>0$, there exists an ϵC^{0}-small diffeotopy $h^{t}: V \rightarrow V, t \in[0,1]$, and a holonomic section $\tilde{F}: \mathcal{O} p h^{1}(A) \rightarrow J^{r}(X)$ such that $\operatorname{dist}(\tilde{F}(v), F(v))<\epsilon$ for all $v \in \mathcal{O} p h^{1}(A)$.

There is also parametric version, which is essentially the same result but with some extra parameters floating around.

Theorem 3.6 (Parametric Holonomic Approximation) Let $A \subset V$ be a polyhedron of positive codimension and suppose we have sections

$$
F_{z}: \mathcal{O} p A \rightarrow J^{r}(X), \quad z \in I^{m}
$$

with F_{z} holonomic for all $z \in \mathcal{O} p \partial I^{m}$ (here I^{m} denotes the m-dimensional unit cube). Then for any $\epsilon>0$, there exists a family of ϵC^{0}-small diffeotopies $h_{z}^{t}: V \rightarrow V, t \in[0,1], z \in I^{m}$, and holonomic sections $\tilde{F}_{z}: \mathcal{O} p h_{z}^{1}(A) \rightarrow J^{r}(X), z \in I^{m}$, such that

- $h_{z}^{t}=i d_{V}$ and $\tilde{F}_{z}=F_{z}$ for all $z \in \mathcal{O} p \partial I^{m}$
- $\operatorname{dist}\left(\tilde{F}_{z}(v), F_{z}(v)\right)<\epsilon$ for all $v \in \mathcal{O} p h_{z}^{1}(A), z \in I^{m}$.

Remark 3.7 There is also a relative version, where F is already holonomic near a subpolyhedron B, and h is the identity and $\tilde{F}=F$ on $\mathcal{O} p(B)$.

4 Applications

Let $V^{2 n+1}$ be an open manifold (i.e. every component is either noncompact or has nonempty boundary). Here is the main result we are interested in.

Theorem 4.1 (Gromov) The natural map
$\{$ cooriented contact structures on $V\} \hookrightarrow\{$ cooriented almost contact structures on $V\}$ is a homotopy equivalence.

Here the set on the right hand side can be identified with the set of pairs $\left(\xi_{+}, \omega\right)$ such that ξ_{+} is a cooriented hyperplane distribution on V and ω is a positive conformal class of symplectic structures on ξ_{+}.

Proof There is a bundle homomorphism $D: J^{1}\left(\Lambda^{1} V\right) \rightarrow \Lambda^{2} V$, called the "symbol of d ", such that the composition

$$
\sec \left(\Lambda^{1} V\right) \longrightarrow \sec \left(J^{1}\left(\Lambda^{1} V\right)\right) \longrightarrow \sec \left(\Lambda^{2} V\right)
$$

of J^{1} and the map \tilde{D} on sections induced by D gives the usual exterior derivative

$$
d: \sec \left(\Lambda^{1} V\right) \rightarrow \sec \left(\Lambda^{2} V\right)
$$

Remark 4.2 In local coordinates, the fiber of $J^{1}\left(\Lambda^{1} V\right)$ is $M_{n}(\mathbb{R})$, the fiber of $\Lambda^{2} V$ is the set of skew-symmetric $n \times n$ matrices, and $D(A)=A-A^{T}$.

Remark 4.3 Given $(\alpha, \beta) \in \Lambda^{1} V \oplus \Lambda^{2} V$, we can always find $F \in \sec \left(J^{1}\left(\Lambda^{1} V\right)\right)$ such that $(\alpha, \beta)=(b s F, \tilde{D} F)$. In particular, a cooriented almost contact structure gives rise to a section of $J^{1}\left(\Lambda^{1} V\right)$ (and in fact the space of such lifts is contractible).

Consider the projection $b s: J^{1}\left(\Lambda^{1} V\right) \rightarrow \Lambda^{1} V$. Let $\mathcal{R}_{\text {cont }} \subset J^{1}\left(\Lambda^{1} V\right)$ be given by

$$
\mathcal{R}_{\text {cont }}=\left\{x \in J^{1}\left(\Lambda^{1} V\right): b s(x) \wedge(D x)^{n} \neq 0\right\}
$$

(here $\operatorname{dim} X=2 n+1$).
Surjectivity on π_{0} : Let F be a section of $J^{1}\left(\Lambda^{1} V\right) \rightarrow \Lambda^{1} V$ with image in $\mathcal{R}_{\text {cont }}$.

Fact 4.4 The open manifold V contains a polyhedron $K \subset V$ of positive codimension such that V can be retracted by an isotopy $\phi_{t}: V \rightarrow V, t \in[0,1]$, into an arbitrarily small neighborhood of K.

Indeed, triangulate V. Pick disjoint paths from the barycenter of each $(2 n+1)$-simplex to ∞ (i.e. the path either ends in the boundary of V or exits every compact subset). Use these paths to isotope V into the complement of the barycenters of all $(2 n+1)$-simplices. Finally, retract each punctured $(2 n+1)$-simplex to a neighborhood of its boundary.

Now let $K \subset V$ be a polyhedron as in the fact above. Holonomic approximation gives

- a diffeotopy $h^{t}: V \rightarrow V, t \in[0,1]$
- a holonomic section \tilde{F} of $J^{1}\left(\Lambda^{1} V\right)$ on $\mathcal{O} p h^{1} K, C^{0}$-close to $\left.F\right|_{\mathcal{O}_{p} h^{1} K}$.

Notation 4.5 Let $(\alpha, \beta)=(b s F, D F)$ and $(\tilde{\alpha}, d \tilde{\alpha})=(b s \tilde{F}, D \tilde{F})$.
By openness of $\mathcal{R}_{\text {cont }}$ and C^{0}-proximity, we can assume ($\left.\tilde{\alpha}, d \tilde{\alpha}\right)$ lies in $\mathcal{R}_{\text {cont }}$, as does the linear homotopy (over $\left.\mathcal{O} p h^{1}(K)\right)\left(\alpha_{t}, \beta_{t}\right)$ from (α, β) to $(\tilde{\alpha}, d \tilde{\alpha})$.

Let $g_{t}: V \rightarrow V$ be an isotopy compressing V into $\mathcal{O} p h^{1}(K)$. Then

- $g_{1}^{*}(\tilde{\alpha}, d \tilde{\alpha})$ is a holonomic section of $J^{1}\left(\Lambda^{1} V\right)$ with image in $\mathcal{R}_{\text {cont }}$
- the concatenation of the homotopies $g_{t}^{*}(\alpha, \beta)$ and $g_{1}^{*}\left(\alpha_{t}, \beta_{t}\right)$ gives a homotopy from (α, β) to $g_{1}^{*}(\tilde{\alpha}, d \tilde{\alpha})$ in $\mathcal{R}_{\text {cont }}$.

Finally, for injectivity on π_{0} and for higher homotopy groups we simply mimick the above argument parametrically and apply the parametric holonomic approximation theorem.

Remark 4.6 Similar techniques prove an h-principle for symplectic forms (in a fixed cohomology class) on open manifolds.

In fact, Gromov abstracted the main ideas in the above proof to prove the following general h-principle for open manifolds.

Theorem 4.7 (Gromov) Let V be an open manifold and $X \rightarrow V$ a fiber bundle with a natural action of $\operatorname{diff}(V)$ on X. Let $\mathcal{R} \subset J^{r}(X)$ be an open, diff((V)-invariant subset. Then the inclusion

$$
\text { hol sec } \mathcal{R} \hookrightarrow \sec \mathcal{R}
$$

is a homotopy equivalence.

References

[EM] Y. Eliashberg and Nikolai M. Mishachev. Introduction to the h-principle. Number 48. American Mathematical Soc., 2002.

