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1 Introduction

The goal of this talk is to give a basic introduction to h-principle and some of the ideas
involved in its proof, with a primary focus on Gromov’s h-principle for contact structures
on open manifolds. To illustrate the h principle, we begin with an example, one of the first
h-principles discovered.

Theorem 1.1 Smale, Hirsch 59 The natural map
{immersions V- — W} < {fiberwise injective bundle maps TV — TW },
1s a homotopy equivalence, where V"™ and W9 are smooth manifolds with n < q.

Note that, in particular, this theorem characterizes immerions up to regular homotopy in
terms of homotopy classes of bundle maps.

Remark 1.2 The condition n < q is essential and s a typical hypothesis in h-principles.



N
S

Figure 1: A typical section of J'(R,R)

2 Jet bundles and holonomic sections

Given a fiber bundle X — V', we can construct another fiber bundle J"(X) — X (which is
evidently also a bundle over V'), with the fiber of J"(X) over p € V' given by

{sections € C*(Op(p), X)}/ ~,

where for F': U — X, G : V — X, we declare F' ~ G if, in local coordinates, I’ and G have
the same rth order Taylor polynomials at p. Recall that Op(p) denotes a small, unspecified
neighborhood of p.

Notation 2.1 For smooth manifolds V,W, we set J"(V,W) = J(V x W), thinking of
V x W as the trivial bundle V. x W — V.

Example 2.2 e J)(X)=X
o JN(V,R) =R x T*V
o J'V,W)={(p.q.P) : p€V,q € W,P C T,V x T,W,PNT,WV = {0}}
o A typical section of JH(R,R) is portrayed in Figure 1.
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given essentially by taking derivatives.



Definition 2.3 A section of J"(X) — V is called holonomic if F = JJ, n, where bs F
denotes the underlying section of X — V.

Notation 2.4 We will use bs to denote the projection map bs : J"(X) — X as well as the
induced map on sections bs : sec(J" (X)) — sec(X).

Example 2.5 o An arbitrary section of J3(R,R) is of the form x — (z, f(z), g(x), h(z), k(z)).
e A holonomic section of J*(R, R) is of the form x — (z, f(x), f'(x), f"(x), f"(z)).

3 Holonomic approximation

Our desire is to approximate a section F' of J"(X) — V by a holonomic one.

Futile Example 3.1 Let F be the section of J'(R,R) — R given by F(z) = (x,2,0). A
holonomic approximation would be a function f(x) with |f'(z)| < € and |f(z) — z| <.

Example 3.2 Near a point p € V, we can always approzimate F|opp by the Taylor poly-
nomial specified by F(p), which is holonomic.

Question 3.3 Can we always holonomically approzimate F near a 1-cell?
Futile Example 3.4 Consider the section F of J'(R? R) — R? given by
F(ZL‘h ZL’Q) == (I'l, T, f([L'l, 5(72), O, O),

with f(x1,x9) = x1. Consider the problem of finding a holonomic approximation of F near
I:={(x1,0) : 0 < x <1} C R% A little thought shows that this is impossible, for
essentially the same reason as before.

Key idea: if we are allowed to replace the 1-cell I by some C%-close 1-cell I’, then we can
holonomically approximate F on Op(I")!

Theorem 3.5 (Holonomic Approximation) Let A C'V be a polyhedron of positive codimen-
sion and let F : Op(A) — J"(X) be a section. Then for any € > 0, there exists an ¢ C°-small
diffeotopy h* : V' — V, t € [0,1], and a holonomic section F : Op h'(A) — J"(X) such that
dist(F'(v), F(v)) < € for all v € Op h'(A).

There is also parametric version, which is essentially the same result but with some extra
parameters floating around.

Theorem 3.6 (Parametric Holonomic Approximation) Let A C'V be a polyhedron of posi-
tive codimension and suppose we have sections

F.:0OpA—J(X), zelI™

with F, holonomic for all z € Op OI™ (here I denotes the m-dimensional unit cube). Then
for any € > 0, there exists a family of € CY-small diffeotopies hl : V —V,t €[0,1], z € I™,
and holonomic sections F, : Op h1(A) — J"(X), z € I"™, such that
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o hl =idy and F,=F, for all z € Op OI™

o dist(F,(v),F.(v)) <€ for allv e Op hl(A), z € I™.

Remark 3.7 There is also a relative version, where F' is already holonomic near a subpoly-
hedron B, and h is the identity and F = F on Op(B).

4 Applications

Let V2! be an open manifold (i.e. every component is either noncompact or has nonempty
boundary). Here is the main result we are interested in.

Theorem 4.1 (Gromov) The natural map
{cooriented contact structures on V'} < {cooriented almost contact structures on V'}
15 a homotopy equivalence.

Here the set on the right hand side can be identified with the set of pairs (£, ,w) such that £,
is a cooriented hyperplane distribution on V' and w is a positive conformal class of symplectic
structures on &, .

Proof There is a bundle homomorphism D : JY(A'W) — A%V called the “symbol of d”,
such that the composition

sec(A'V) ——sec(JH(A'V)) ——sec(A2V)
of J* and the map D on sections induced by D gives the usual exterior derivative
d : sec(A'V) — sec(A?V).

Remark 4.2 In local coordinates, the fiber of J'(A'V) is M,,(R), the fiber of A*V is the set
of skew-symmetric n X n matrices, and D(A) = A — AT.

Remark 4.3 Given («, ) € A'V @ A°V, we can always find F € sec(J'(A'V)) such that
(o, B) = (bs F,DF). In particular, a cooriented almost contact structure gives rise to a
section of JH(A'V) (and in fact the space of such lifts is contractible).

Consider the projection bs : J'(A'V) — A'V. Let Reons € J'(A'V) be given by
Reont = {2 € JHA'V) : bs(z) A (D)™ # 0}

(here dim X = 2n + 1).
Surjectivity on mo: Let F be a section of J'(A'V) — AV with image in Reons-
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Fact 4.4 The open manifold V' contains a polyhedron K C V' of positive codimension such
that V' can be retracted by an isotopy ¢ : V. — V, t € [0,1], into an arbitrarily small
neighborhood of K .

Indeed, triangulate V. Pick disjoint paths from the barycenter of each (2n + 1)-simplex to
oo (i.e. the path either ends in the boundary of V' or exits every compact subset). Use these
paths to isotope V' into the complement of the barycenters of all (2n + 1)-simplices. Finally,
retract each punctured (2n + 1)-simplex to a neighborhood of its boundary.

Now let K C V be a polyhedron as in the fact above. Holonomic approximation gives

e a diffeotopy h' : V — V¢t € [0, 1]
e a holonomic section F of J'(A'V) on Op h' K, C%close to F|op k-
Notation 4.5 Let (o, ) = (bs F, DF) and (&, da) = (bs F, DF).

By openness of Reo and C%-proximity, we can assume (&, d@) lies in Reons, as does the
linear homotopy (over Op h'(K)) (ay, ;) from (o, ) to (&, da).
Let g; : V — V be an isotopy compressing V into Op h'(K). Then

e gi(a,da) is a holonomic section of J*(A'V) with image in Reons
e the concatenation of the homotopies g;(a, 8) and g¢i(ay, ;) gives a homotopy from

(Oé7 B) tO gr<d7 d&) iIl 7?’cont-

Finally, for injectivity on my and for higher homotopy groups we simply mimick the above
argument parametrically and apply the parametric holonomic approximation theorem. |

Remark 4.6 Similar techniques prove an h-principle for symplectic forms (in a fized coho-
mology class) on open manifolds.

In fact, Gromov abstracted the main ideas in the above proof to prove the following general
h-principle for open manifolds.

Theorem 4.7 (Gromov) Let V' be an open manifold and X — V a fiber bundle with a
natural action of diff(V') on X. Let R C J"(X) be an open, diff(V')-invariant subset. Then
the inclusion

hol sec R — sec R

1s a homotopy equivalence.
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