Homological Mirror Symmetry for \mathbb{CP}^1

Kyler Siegel

April 15, 2014

Goal: show that \mathbb{CP}^1 is mirror to $(\mathbb{C}^*, W(z) := z + 1/z)$. Here the pair $(\mathbb{C}^*, W(z))$ of a complex manifold and a holomorphic function on it is called a "Landau-Ginzburg model".

Remark 0.1 \mathbb{CP}^1 is Fano, rather than Calabi-Yau, so its mirror is a Landau-Ginzburg model rather than just a manifold.

Outline:

- 1. B-branes on \mathbb{CP}^1
- 2. A-branes on (C^*, W)
- 3. B-branes on (C^*, W)
- 4. A-branes on \mathbb{CP}^1

Mirror symmetry should give correspondences $(1) \leftrightarrow (2)$ and $(3) \leftrightarrow (4)$.

1 B-branes on \mathbb{CP}^1

Definition 1.1 We take the category of B-branes on \mathbb{CP}^1 to be $D^bCoh(\mathbb{CP}^1)$.

This is a strong invariant:

Theorem 1.2 For X, Y smooth projective varieties with ω_X or ω_X^{-1} ample, $D^bCoh(X)$ equivalent to $D^bCoh(Y)$ implies that X is isomorphic to Y.

Coherent sheaves on \mathbb{CP}^1 are classified:

Theorem 1.3 Any coherent sheaf on \mathbb{CP}^1 is a finite direct sum of line bundles and skyscraper sheaves.

Thus studying $D^b \operatorname{Coh}(\mathbb{CP}^1)$ reduces to studying the coherent sheaf

$$\mathcal{E} := \mathcal{O} \oplus \mathcal{O}(1).$$

Lemma 1.4 The smallest triangulated subcategory of $D^bCoh(\mathbb{CP}^1)$ containing \mathcal{E} and closed under taking direct summands is $D^bCoh(\mathbb{CP}^1)$ itself.

Lemma 1.5 $Hom(\mathcal{O}(m), \mathcal{O}(n)) \simeq \mathcal{O}(n-m).$

Lemma 1.6 Global sections of $\mathcal{O}(d)$ (on \mathbb{CP}^1) correspond to homogeneous degree d elements of $\mathbb{C}[x, y]$.

Lemma 1.7 $Ext^i(\mathcal{E}, \mathcal{E}) = 0$ for i > 0.

Remark 1.8 $Ext^{i}_{Coh(\mathbb{CP}^{1})}(X,Y) = Hom_{D^{b}Coh(\mathbb{CP}^{1})}(X,Y[i]).$

So the only interesting Ext group of \mathcal{E} is $\operatorname{Ext}^{0}(\mathcal{E}, \mathcal{E}) = \operatorname{Hom}(\mathcal{E}, \mathcal{E})$. Let Q be the quiver $\cdot \longrightarrow \cdot$, and let $\operatorname{PA}(Q)$ denote its path algebra.

Lemma 1.9 $Hom(\mathcal{E}, \mathcal{E}) \cong PA(Q)$.

Remark 1.10 The two arrows correspond to the morphisms $x, y : \mathcal{O} \to \mathcal{O}(1)$.

Proposition 1.11 $D^bCoh(\mathbb{CP}^1)$ is triangle equivalent to $D^b(PA(Q) - mod)$, where the latter denotes the derived category of modules over the algebra PA(Q).

2 A-branes on (C^*, W)

Equip \mathbb{CP}^1 with the symplectic form $\omega = \frac{idz \wedge d\overline{z}}{z\overline{z}}$. Observe that $W'(z) = 1 - 1/z^2$, hence the critical points of W occur when $z = \pm 1$. Moreover, $W''(z) = 2/z^3$, and $W''(\pm 1) = \pm 2$, hence W has non-degenerate (i.e. Lefshetz type) critical points.

Now pick a regular value $q \in C$. Then the regular fiber $W^{-1}(q) \subset \mathbb{C}^*$ consists of two points. Pick paths in \mathbb{C} joining q to -2 and to 2. Then we get corresponding vanishing cycles in $W^{-1}(q)$ and vanishing thimbles $L_1, L_2 \subset \mathbb{C}$.

Definition 2.1 • Let FS(W) be the \mathcal{A}_{∞} -category whose objects are a collection of vanishing thimbles L_i , with morphisms

$$Hom(L_i, L_j) := \begin{cases} CF(\partial L_i, \partial L_j) & \text{if } i < j \\ k \ id_{L_i} & \text{if } i = j \\ 0 & \text{otherwise,} \end{cases}$$

with the \mathcal{A}_{∞} structure maps on the vanishing cycles of $W^{-1}(q)$.

 The category of A-branes is the bounded derived idempotent completion of the above, denoted D^πFS(W).

Remark 2.2 • $D^b FS(W) = H^0 TwFS(W)$.

• A morphism $e: X \to X$ is idempotent if $e \circ e = e$, and split if there is an object Y and morphisms $f: X \to Y$ and $g: Y \to X$ such that $g \circ f = e$ and $f \circ g = \mathbb{I}$.

Remark 2.3 We have seen earlier in the seminar that, up to equivalence, $D^{\pi}FS(W)$ is independent of the choice of vanishing paths.

Claim: The morphism algebra of FS(W) is PA(Q), and $D^{\pi}FS(W)$ is the bounded derived category of finite dimensional representations of Q.

Therefore $D^{\pi} FS(W) \simeq D^b Coh(\mathbb{CP}^1)$.

3 B-branes on (C^*, W)

Remark 3.1 Coherent sheaves on \mathbb{C}^* are equivalent to $\mathbb{C}[z, z^{-1}]$ -modules, but we need to use W somehow.

Definition 3.2 • For A an algebra and $f \in A$, a matrix factorization of f consists of P_0, P_1 projective modules over A, and $d_P^0 : P_0 \to P_1$ and $d_P^1 : P_1 \to P_0$ such that $d_P^0 d_P^1 = d_P^1 d_P^0 = f\mathbb{I}$.

• For P^*, Q^* matrix factorizations, set

$$Hom_{MF(f)}(P^*,Q^*) = Hom_A(P_0 \oplus P_1,Q_0 \oplus Q_1),$$

 $\mathbb{Z}/2$ -graded with degree 0 piece: $Hom_A(P_0, Q_0) \oplus Hom_A(P_1, Q_1)$ and degree 1 piece: $Hom_A(P_0, Q_1) \oplus Hom_A(P_1, Q_0)$.

• Equip $Hom_{MF(f)}(P^*, Q^*)$ with a differential:

$$d_{P,Q}\phi = d_Q\phi \pm \phi d_P.$$

• The category of B-branes of (\mathbb{C}^*, W) is $\prod_{\lambda \in \mathbb{C}} MF(W - \lambda)$

Fact: $d_{P,Q}^2 = 0$.

Definition 3.3 MF(f) is the category with objects matrix factorizations and morphisms:

$$H^0(Hom_{MF(f)}(P^*,Q^*)).$$

Proposition 3.4 MF(f) is triangulated.

Now consider the slightly more general W(z) = z + Q/z (with Q = 1 in our case). Then W has critical points $\pm \sqrt{Q}$ with critical values $\pm 2\sqrt{Q}$, and $W \pm 2\sqrt{Q} = (1/z)(z \pm \sqrt{Q})^2$. Let F_{\pm} be the matrix factorization for $W \mp 2\sqrt{Q} \in \mathbb{C}[z, z^{-1}]$, with $P_0 = P_1 = \mathbb{C}[z, z^{-1}]$, $d_P^0 = (1/z)(z \mp \sqrt{Q})$, and $d_P^1 = (z \mp \sqrt{Q})$. **Proposition 3.5** $Hom_{MF(W\mp 2\sqrt{Q})}(F_{\pm}, F_{\pm})$ is isomorphic to the Clifford algebra on a single generator ϕ , with $\phi \cdot \phi = -(\partial_z^2 W)(\pm \sqrt{Q})$.

Claim:

- 0 and F_{\pm} generate $MF(W \mp 2\sqrt{Q})$
- The category of B-branes for $(\mathbb{C}^*, z + Q/z)$ is equivalent to

$$D^{b}(k\langle x\rangle/\langle x^{2}=1/\sqrt{Q}\rangle) \times D^{b}(k\langle x\rangle/\langle x^{2}=-1/\sqrt{Q}\rangle)$$

(i.e. $\mathbb{C}[x]/\langle x^2 = \pm 1 \rangle$ in the simplest case).

4 A-branes on \mathbb{CP}^1

- We take the category of A-branes on \mathbb{CP}^1 to be $D^{\pi}(\mathbb{CP}^1)$.
- The Fukaya category of \mathbb{CP}^1 is indexed by "charge" $\lambda \in \mathbb{C}$, where Fuk (\mathbb{CP}^1, λ) consists of weakly unobstructed Lagrangians with $m_0 = \lambda \cdot [L]$. Here weakly unobstructed means μ_L^0 is a scalar multiple (the "central charge" or "superpotential") of the cohomological unit of Hom(L, L).
- We should really take pairs (L, ∇) , where ∇ is a flat unitary connection on a vector bundle.
- $HF(L^{\nabla}, L^{\nabla}) = 0$ unless L is the equator and $hol(\nabla) = \pm \mathbb{I}$.
- HF(L[∇], L[∇]) in this case is isomorphic to H^{*}(S¹, C) as a module, but with multiplicative structure making it isomorphic to C[x]/(x² = ±1).

References

- [Aur] Denis Auroux. http://www-math.mit.edu/ auroux/18.969/, Lectures 24 and 25. (2009).
- [Bal] Matthew Robert Ballard. Meet homological mirror symmetry. arXiv preprint arXiv:0801.2014 (2008).