Homological Mirror Symmetry for $\mathbb{C P}^{1}$

Kyler Siegel

April 15, 2014

Goal: show that $\mathbb{C P}^{1}$ is mirror to $\left(\mathbb{C}^{*}, W(z):=z+1 / z\right)$. Here the pair $\left(\mathbb{C}^{*}, W(z)\right)$ of a complex manifold and a holomorphic function on it is called a "Landau-Ginzburg model".

Remark 0.1 $\mathbb{C P}^{1}$ is Fano, rather than Calabi-Yau, so its mirror is a Landau-Ginzburg model rather than just a manifold.

Outline:

1. B-branes on $\mathbb{C P}^{1}$
2. A-branes on $\left(C^{*}, W\right)$
3. B-branes on $\left(C^{*}, W\right)$
4. A-branes on $\mathbb{C P}^{1}$

Mirror symmetry should give correspondences (1) $\leftrightarrow(2)$ and (3) $\leftrightarrow(4)$.

1 B-branes on $\mathbb{C P}^{1}$

Definition 1.1 We take the category of B-branes on $\mathbb{C P}^{1}$ to be $D^{b} \operatorname{Coh}\left(\mathbb{C P}^{1}\right)$.
This is a strong invariant:
Theorem 1.2 For X, Y smooth projective varieties with ω_{X} or ω_{X}^{-1} ample, $D^{b} \operatorname{Coh}(X)$ equivalent to $D^{b} \operatorname{Coh}(Y)$ implies that X is isomorphic to Y.

Coherent sheaves on $\mathbb{C P}^{1}$ are classified:
Theorem 1.3 Any coherent sheaf on $\mathbb{C P}^{1}$ is a finite direct sum of line bundles and skyscraper sheaves.

Thus studying $D^{b} \operatorname{Coh}\left(\mathbb{C P}^{1}\right)$ reduces to studying the coherent sheaf

$$
\mathcal{E}:=\mathcal{O} \oplus \mathcal{O}(1)
$$

Lemma 1.4 The smallest triangulated subcategory of $D^{b} \operatorname{Coh}\left(\mathbb{C P}^{1}\right)$ containing \mathcal{E} and closed under taking direct summands is $D^{b} \operatorname{Coh}\left(\mathbb{C P}^{1}\right)$ itself.

Lemma 1.5 $\operatorname{Hom}(\mathcal{O}(m), \mathcal{O}(n)) \simeq \mathcal{O}(n-m)$.
Lemma 1.6 Global sections of $\mathcal{O}(d)$ (on $\left.\mathbb{C P}^{1}\right)$ correspond to homogeneous degree d elements of $\mathbb{C}[x, y]$.

Lemma 1.7 $\operatorname{Ext}^{i}(\mathcal{E}, \mathcal{E})=0$ for $i>0$.
Remark 1.8 $\operatorname{Ext}_{C o h\left(\mathbb{C P}^{1}\right)}^{i}(X, Y)=\operatorname{Hom}_{D^{b} \operatorname{Coh}\left(\mathbb{C P}^{1}\right)}(X, Y[i])$.
So the only interesting Ext group of \mathcal{E} is $\operatorname{Ext}^{0}(\mathcal{E}, \mathcal{E})=\operatorname{Hom}(\mathcal{E}, \mathcal{E})$.
Let Q be the quiver \rightarrow, and let $\mathrm{PA}(Q)$ denote its path algebra.
Lemma 1.9 $\operatorname{Hom}(\mathcal{E}, \mathcal{E}) \cong P A(Q)$.
Remark 1.10 The two arrows correspond to the morphisms $x, y: \mathcal{O} \rightarrow \mathcal{O}(1)$.
Proposition $1.11 D^{b} \operatorname{Coh}\left(\mathbb{C P}^{1}\right)$ is triangle equivalent to $D^{b}(P A(Q)-\bmod)$, where the latter denotes the derived category of modules over the algebra $P A(Q)$.

2 A-branes on $\left(C^{*}, W\right)$

Equip $\mathbb{C P}^{1}$ with the symplectic form $\omega=\frac{i d z \wedge d \bar{z}}{z \bar{z}}$. Observe that $W^{\prime}(z)=1-1 / z^{2}$, hence the critical points of W occur when $z= \pm 1$. Moreover, $W^{\prime \prime}(z)=2 / z^{3}$, and $W^{\prime \prime}(\pm 1)= \pm 2$, hence W has non-degenerate (i.e. Lefshetz type) critical points.

Now pick a regular value $q \in C$. Then the regular fiber $W^{-1}(q) \subset \mathbb{C}^{*}$ consists of two points. Pick paths in \mathbb{C} joining q to -2 and to 2 . Then we get corresponding vanishing cycles in $W^{-1}(q)$ and vanishing thimbles $L_{1}, L_{2} \subset \mathbb{C}$.

Definition $2.1 \bullet$ Let $F S(W)$ be the \mathcal{A}_{∞}-category whose objects are a collection of vanishing thimbles L_{i}, with morphisms

$$
\operatorname{Hom}\left(L_{i}, L_{j}\right):= \begin{cases}C F\left(\partial L_{i}, \partial L_{j}\right) & \text { if } i<j \\ k i d_{L_{i}} & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

with the \mathcal{A}_{∞} structure maps on the vanishing cycles of $W^{-1}(q)$.

- The category of A-branes is the bounded derived idempotent completion of the above, denoted $D^{\pi} F S(W)$.

Remark 2.2 - $D^{b} F S(W)=H^{0} \operatorname{TwFS}(W)$.

- A morphism $e: X \rightarrow X$ is idempotent if $e \circ e=e$, and split if there is an object Y and morphisms $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $g \circ f=e$ and $f \circ g=\mathbb{I}$.

Remark 2.3 We have seen earlier in the seminar that, up to equivalence, $D^{\pi} F S(W)$ is independent of the choice of vanishing paths.

Claim: The morphism algebra of $\operatorname{FS}(W)$ is $\operatorname{PA}(Q)$, and $D^{\pi} \mathrm{FS}(W)$ is the bounded derived category of finite dimensional representations of Q.

Therefore $D^{\pi} \mathrm{FS}(W) \simeq D^{b} \operatorname{Coh}\left(\mathbb{C P}^{1}\right)$.

3 B-branes on (C^{*}, W)

Remark 3.1 Coherent sheaves on \mathbb{C}^{*} are equivalent to $\mathbb{C}\left[z, z^{-1}\right]$-modules, but we need to use W somehow.

Definition 3.2 - For A an algebra and $f \in A$, a matrix factorization of f consists of P_{0}, P_{1} projective modules over A, and $d_{P}^{0}: P_{0} \rightarrow P_{1}$ and $d_{P}^{1}: P_{1} \rightarrow P_{0}$ such that $d_{P}^{0} d_{P}^{1}=d_{P}^{1} d_{P}^{0}=f \mathbb{I}$.

- For P^{*}, Q^{*} matrix factorizations, set

$$
\operatorname{Hom}_{M F(f)}\left(P^{*}, Q^{*}\right)=\operatorname{Hom}_{A}\left(P_{0} \oplus P_{1}, Q_{0} \oplus Q_{1}\right)
$$

$\mathbb{Z} / 2$-graded with degree 0 piece: $\operatorname{Hom}_{A}\left(P_{0}, Q_{0}\right) \oplus \operatorname{Hom}_{A}\left(P_{1}, Q_{1}\right)$ and degree 1 piece: $\operatorname{Hom}_{A}\left(P_{0}, Q_{1}\right) \oplus \operatorname{Hom}_{A}\left(P_{1}, Q_{0}\right)$.

- Equip $\operatorname{Hom}_{M F(f)}\left(P^{*}, Q^{*}\right)$ with a differential:

$$
d_{P, Q} \phi=d_{Q} \phi \pm \phi d_{P} .
$$

- The category of B-branes of $\left(\mathbb{C}^{*}, W\right)$ is $\prod_{\lambda \in \mathbb{C}} M F(W-\lambda)$

Fact: $d_{P, Q}^{2}=0$.
Definition 3.3 $M F(f)$ is the category with objects matrix factorizations and morphisms:

$$
H^{0}\left(\operatorname{Hom}_{M F(f)}\left(P^{*}, Q^{*}\right)\right)
$$

Proposition 3.4 $M F(f)$ is triangulated.
Now consider the slightly more general $W(z)=z+Q / z$ (with $Q=1$ in our case). Then W has critical points $\pm \sqrt{Q}$ with critical values $\pm 2 \sqrt{Q}$, and $W \pm 2 \sqrt{Q}=(1 / z)(z \pm \sqrt{Q})^{2}$. Let $F_{ \pm}$be the matrix factorization for $W \mp 2 \sqrt{Q} \in \mathbb{C}\left[z, z^{-1}\right]$, with $P_{0}=P_{1}=\mathbb{C}\left[z, z^{-1}\right]$, $d_{P}^{0}=(1 / z)(z \mp \sqrt{Q})$, and $d_{P}^{1}=(z \mp \sqrt{Q})$.

Proposition 3.5 $\operatorname{Hom}_{M F(W \mp 2 \sqrt{Q})}\left(F_{ \pm}, F_{ \pm}\right)$is isomorphic to the Clifford algebra on a single generator ϕ, with $\phi \cdot \phi=-\left(\partial_{z}^{2} W\right)(\pm \sqrt{Q})$.

Claim:

- 0 and $F_{ \pm}$generate $M F(W \mp 2 \sqrt{Q})$
- The category of B-branes for $\left(\mathbb{C}^{*}, z+Q / z\right)$ is equivalent to

$$
D^{b}\left(k\langle x\rangle /\left\langle x^{2}=1 / \sqrt{Q}\right\rangle\right) \times D^{b}\left(k\langle x\rangle /\left\langle x^{2}=-1 / \sqrt{Q}\right\rangle\right)
$$

(i.e. $\mathbb{C}[x] /\left\langle x^{2}= \pm 1\right\rangle$ in the simplest case).

4 A-branes on $\mathbb{C P}^{1}$

- We take the category of A-branes on $\mathbb{C P}^{1}$ to be $D^{\pi}\left(\mathbb{C P}^{1}\right)$.
- The Fukaya category of $\mathbb{C P}^{1}$ is indexed by "charge" $\lambda \in \mathbb{C}$, where $\operatorname{Fuk}\left(\mathbb{C P}^{1}, \lambda\right)$ consists of weakly unobstructed Lagrangians with $m_{0}=\lambda \cdot[L]$. Here weakly unobstructed means μ_{L}^{0} is a scalar multiple (the "central charge" or "superpotential") of the cohomological unit of $\operatorname{Hom}(L, L)$.
- We should really take pairs (L, ∇), where ∇ is a flat unitary connection on a vector bundle.
- $H F\left(L^{\nabla}, L^{\nabla}\right)=0$ unless L is the equator and $\operatorname{hol}(\nabla)= \pm \mathbb{I}$.
- $H F\left(L^{\nabla}, L^{\nabla}\right)$ in this case is isomorphic to $H^{*}\left(S^{1}, \mathbb{C}\right)$ as a module, but with multiplicative structure making it isomorphic to $\mathbb{C}[x] /\left\langle x^{2}= \pm 1\right\rangle$.

References

[Aur] Denis Auroux. http://www-math.mit.edu/ auroux/18.969/, Lectures 24 and 25. (2009).
[Bal] Matthew Robert Ballard. Meet homological mirror symmetry. arXiv preprint arXiv:0801.2014 (2008).

