Exterior Differential Systems*

Kyler Siegel

February 23, 2014

1 Exterior Differential Systems and Basic Examples

Definition 1.1 An exterior differential system (EDS) on a smooth manifold M consists of a graded differential ideal \mathcal{I} of the ring $\Omega^*(M)$ of differential forms on M. In particular, \mathcal{I} being differential means it is closed under the exterior derivative $d: \Omega^p(M) \to \Omega^{p+1}(M)$, while graded means it decomposes as

$$\mathcal{I} = \bigoplus_{p=0}^{\infty} \mathcal{I}^p,$$

where $\mathcal{I}^p = \mathcal{I} \cap \Omega^p(M)$.

We will denote by $\langle \gamma_1, ..., \gamma_k \rangle$ the *differential* ideal generated by $\gamma_1, ..., \gamma_k$, i.e. the set of elements of $\Omega^*(M)$ of the form

$$\alpha^1 \wedge \gamma_1 + \ldots + \alpha^k \wedge \gamma_k + \beta^1 \wedge d\gamma_1 + \ldots + \beta^k \wedge d\gamma_k,$$

for some $\alpha^1, ..., \alpha^k, \beta^1, ..., \beta^k \in \Omega^*(M)$. We also denote by $\langle \gamma_1, ..., \gamma_k \rangle_{\text{alg}}$ the "algebraic" ideal (not necessarily closed under d) consisting of elements of the form

$$\alpha^1 \wedge \gamma_1 + \ldots + \alpha^k \wedge \gamma_k.$$

The basic problem of EDS is to find *integral submanifolds* of M, i.e. submanifolds $\iota : N \hookrightarrow M$ such that $\iota^* \mathcal{I} = (0)$.

Example 1.2 Consider the system of ordinary differential equations

$$y'(x) = (xyz)^{17}$$
$$z'(x) = \cosh(x + y + z).$$

^{*}Notes for a talk given on 2/20/14 at Stanford University. Our primary reference is [Bry]

We can model this system by an EDS with $M = \mathbb{R}^3$ and

$$\mathcal{I} = \langle dy - (xyz)^{17} dx, dz - \cosh(x + y + z) dx \rangle.$$

Note that the 1-dimensional integral manifolds of \mathcal{I} are precisely the integral curves of the vector field

$$\frac{\partial}{\partial x} + (xyz)^{17} \frac{\partial}{\partial y} + \cosh(x+y+z) \frac{\partial}{\partial z}.$$

Example 1.3 Consider of the system of partial differential equations given by

$$\frac{\partial u}{\partial x}(x,y) = F(x,y,u(x,y))$$
$$\frac{\partial u}{\partial y}(x,y) = F(x,y,u(x,y)).$$

We can model this by an EDS in \mathbb{R}^3 , with

$$\mathcal{I} = \langle dz - F(x, y, z) dx - G(x, y, z) dy \rangle.$$

Note that a surface $N \subset M$ is integral if and only if both of the vector fields

$$\frac{\partial}{\partial x} + F(x, y, z) \frac{\partial}{\partial z}$$
 and $\frac{\partial}{\partial y} + G(x, y, z) \frac{\partial}{\partial z}$

are tangent to N. Of course, there need not be any 2-dimensional integral manifolds, for example if F(x, y, z) = y and G(x, y, z) = -x.

Example 1.4 Complex curves in \mathbb{C}^2 Let $M = \mathbb{C}^2$ with coordinates z = x + iy and w = u + iv, and let

$$\mathcal{I} = \langle Re(dz \wedge dw), Im(dz \wedge dw) \rangle = \langle dx \wedge du - dy \wedge dv, dx \wedge dv + dy \wedge du \rangle.$$

In this case any real curve in \mathbb{C}^2 is integral, since $\mathcal{I}^1 = (0)$. On the other hand, a real surface $N \subset \mathbb{C}^2$ is integral if and only if it is a complex curve.

Note that N can be written locally as a graph $\{(z, u(z)+iv(z)\}, with u+iv a holomorphic function of z, whenever dx and dy are linearly independent on N. The condition <math>dx \wedge dy \neq 0$ on N is sometimes called an independence condition. Note that u + iv being holomorphic is equivalent to

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0,$$

i.e. \mathcal{I} (with the independence condition) is a model for the Cauchy-Riemann equations.

Example 1.5 Consider a system of first order partial differential equations of the form

$$F^{i}(\mathbf{x}, \mathbf{z}, \frac{\partial \mathbf{z}}{\partial \mathbf{x}}) = 0, \quad i = 1, ..., r,$$

for $\mathbf{x} = (x^1, ..., x^a)$ independent variables, $\mathbf{z} = (z^1, ..., z^b)$ dependent variables, and $\frac{\partial \mathbf{z}}{\partial \mathbf{x}}$ the Jacobian matrix of \mathbf{z} with respect to \mathbf{x} . Assume that the common zero set $M^{a+b+ab-r}$ of $\{F^i\}$ in $\mathbb{R}^a \times \mathbb{R}^b \times \mathbb{R}^{ab}$ (with coordinates $(\mathbf{x}, \mathbf{z}, \mathbf{y})$) is cut out transversely, i.e. that $(F^1, ..., F^r)$: $\mathbb{R}^a \times \mathbb{R}^b \times \mathbb{R}^{ab} \to \mathbb{R}^r$ is a submersion. We define an EDS on M by

$$\langle dz^1 - \sum_{i=1}^a y_i^1 dx^i, ..., dz^b - \sum_{i=1}^a y_i^b dx^i \rangle$$

Then the n-dimensional integral submanifolds $N \subset M$ of \mathcal{I} , satisfying the independence condition $dx^1 \wedge \ldots \wedge dx^a \neq 0$, are precisely the graphs of solutions of the original PDE system.

Example 1.6 We can certainly use this same principle to encode higher order PDE systems as well. For example, an equation of the form

$$F(x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}) = 0,$$

with $M^7 = \{F(x, y, u, p, q, r, s, t) = 0\} \subset \mathbb{R}^8$ a smooth hypersurface, can be encoded using

$$\mathcal{I} = \langle du - pdx - qdy, dp - rdx - sdy, dq - sdx - tdy \rangle.$$

2 The Frobenius Theorem

In what follows, we call an EDS (M, \mathcal{I}) Frobenius if $\mathcal{I} = \langle \mathcal{I}^1 \rangle_{alg}$ with dim $\mathcal{I}_p^1 = r$ constant as p varies.

Theorem 2.1 Let (M^m, \mathcal{I}) be an EDS which is Frobenious. Then each $p \in M$ has a local coordinate chart $(y^1, ..., y^m)$ on which

$$\mathcal{I} = \langle dy^1, ..., dy^{m-n} \rangle.$$

In particular, the local n-dimensional integral manifolds of \mathcal{I} are just slices

$$\{y^1 = c^1, ..., y^{m-n} = c^{m-n}\}.$$

Example 2.2 Recall that the system

$$\frac{\partial u}{\partial x}(x,y) = F(x,y,u(x,y))$$
$$\frac{\partial u}{\partial y}(x,y) = F(x,y,u(x,y)).$$

became the EDS with $\mathcal{I} = \langle \zeta \rangle$, where

$$\zeta = dz - F(x, y, z)dx - G(x, y, z)dy.$$

Now the condition for the Frobenius theorem is that $\langle \zeta \rangle = \langle \zeta \rangle_{alg}$, which by simple linear algebra is equivalent to

$$0 = \zeta \wedge d\zeta = (F_y - G_x + GF_z + FG_z)dx \wedge dy \wedge dz.$$

Hence, if F and G satisfy the auxiliary equation

$$F_y - G_x + GF_z - FG_z = 0,$$

then the Frobenius Theorem gives for any $(x_0, y_0, z_0) \in \mathbb{R}^3$ a function u(x, y) defined near (x_0, y_0) with

$$u(x_0, y_0) = z_0$$

$$u_x = F(x, y, u(x, y))$$

$$u_y = G(x, y, u(x, y)).$$

Remark 2.3 For α a 1-form on an odd-dimensional manifold M^{2n+1} , we have seen that $\alpha \wedge d\alpha = 0$ implies the hyperplane distribution ker α gives a foliation on M. At the other extreme, if $\alpha \wedge d\alpha \wedge \ldots \wedge d\alpha \neq 0 \in \Omega^{2n+1}(M)$, the hyperplane distribution ker α is called a contact structure. In many ways, contact structures behave like symplectic structures on even dimensional manifolds.

Remark 2.4 Before proving the Frobenius theorem, we would like to relate our version to the perhaps more familiar version about distributions in the tangent plane of a manifold M. Namely, if M has an n-plane distribution D which is involutive, then M admits local coordinate charts near any point in which D is spanned by the first n coordinate vector fields. Here involutivity means that the Lie bracket of any two (locally defined) vector fields tangent to D is again tangent to D. We show that this version is equivalent to the version stated at the beginning of this section.

Firstly, assume (M, \mathcal{I}) is Frobenius, and let D be the distribution consisting of tangent vectors on which \mathcal{I}^1 vanishes. For $\theta \in \mathcal{I}^1$ and X, Y local vector fields tangent to D, we have

$$d\theta(X,Y) = X\theta(Y) - Y\theta(X) - \theta([X,Y]),$$

with $\theta(X)$ and $\theta(Y)$ vanishing since X and Y are tangent to D. Since $d\theta(X,Y) \in \langle \mathcal{I}^1 \rangle_{alg}$, we also have $d\theta(X,Y) = 0$. Therefore $\theta([X,Y]) = 0$, so [X,Y] is also tangent to D.

Now assume that D is an involutive n-plane distribution, and let \mathcal{I} be the differential ideal generated by 1-forms vanishing on D. We wish to show that \mathcal{I} is Frobenius, i.e. that $d\theta \in \mathcal{I} \in \langle \mathcal{I}^1 \rangle_{alg}$ for any $\theta \in \mathcal{I}^1$. Let $e_1, ..., e_{n+r}$ be a local frame for TM, with $e_1, ..., e_n$ tangent to D, and let $\theta^1, ..., \theta^{n+r}$ be the dual frame for T^*M . Then we can expand $d\theta$ as

$$d\theta = \sum_{1 \le i < j \le n} A_{ij}\theta^i \wedge \theta^j + \sum_{1 \le i \le n, \ n+1 \le j \le n+r} B_{ij}\theta^i \wedge \theta^j + \sum_{n+1 \le i < j \le n+r} C_{ij}\theta^i \wedge \theta^j$$

Note that the formula for $d\theta$ in the previous paragraph shows that $d\theta(X, Y)$ whenever X and Y are tangent to D, and so in particular $d\theta(e_i, e_j) = 0$ whenever $1 \le i, j \le n$. Therefore we have $A_{ij} = 0$ for all ij. Since $\theta^j \in \mathcal{I}^1$ whenever $n + 1 \le j \le n + r$, we have $d\theta$ in the form $\sum_i \beta_i \land \gamma_i$ for $\gamma_i \in \mathcal{I}^1$, hence $d\theta \in d\theta \in \mathcal{I} \in \langle \mathcal{I}^1 \rangle_{alg}$.

Proof (Frobenius theorem) Assume \mathcal{I} is generated by m - n linearly independent 1-forms $\theta^1, ..., \theta^{m-n}$, and let D be the distribution on which the θ^i vanish. Following [BGC⁺], we proceed by induction on n. Firstly, if n = 1 then D is line field and we can find "flowbox coordinates". Now assume the theorem is true up to n - 1.

We start by picking $x: M \to \mathbb{R}$ a smooth function such that $\theta^1 \wedge ... \wedge \theta^{m-n} \wedge dx \neq 0$ near the point p. Then $\langle \theta^1, ..., \theta^{m-n}, dx \rangle$ is Frobenius, and so by the induction hypothesis we can find local coordinates $(y^1, ..., y^m)$ with

$$\langle dy^1, ..., dy^{m-n-1} \rangle = \langle \theta^1, ..., \theta^{m-n}, dx \rangle.$$

Then we can write

$$dx = \sum_{i=1}^{n-m} a_i dy^i + a_{m-n+1} dy^{m-n+1},$$

$$\theta^i = \sum_{j=1}^{n-m} c_j^i dy^j + c_{m-n+1}^i dy^{m-n+1}, \quad 1 \le i \le n-m,$$

for a_i, c_j^i smooth functions. Assuming without loss of generality that $a_{m-n+1} \neq 0$, we can solve for dy^{m-n+1} in the first equation and use this to rewrite the second equation as

$$\theta^i = \sum_{j=1}^{n-m} \tilde{c}^i_j dy^j + f^i dx$$

for smooth functions \tilde{c}_j^i , f^i . Observe that the matrix of functions \tilde{c}_j^i is invertible near p (since otherwise we could find a nontrivial dependency between the θ^i and dx). Therefore we can write $\mathcal{I} = \langle \tilde{\theta}^1, ..., \tilde{\theta}^{n-m} \rangle$, where

$$\tilde{\theta}^i = dy^i + e^i dx$$

for e^i smooth functions and $\theta^i = \sum_{j=1}^{n-m} \tilde{c}^i_j \tilde{\theta}^j$. Therefore we have $d\tilde{\theta}^i = de^i \wedge dx$, and hence

$$de^i \wedge dx \equiv 0 \mod \{\theta^i\}$$

Therefore we can write

$$de^i = adx + \sum_{j=1}^{n-m} b^i_j dy^j$$

for some functions a, b_j^i . But now we observe that dx and each de^i have expansions involving $dy^1, ..., dy^{m-n+1}$ but not $dy^{m-n+2}, ..., dy^m$, and therefore x and each e^i are functions of $y^1, ..., y^{m-n+1}$ only. Therefore the same is true of the $\tilde{\theta}^i$.

Now let V be the submanifold through p obtained by setting $y^{m-n+2}, ..., y^m$ to be constant. Observe that $\mathcal{I}|_V$ is a codimension one Frobenius system, and hence we can found coordinates $(\tilde{y}^1, ..., \tilde{y}^{m-n+1})$ on V such that $\mathcal{I}|_V$ is generated by $d\tilde{y}^1, ..., d\tilde{y}^{m-n}$. Then we can take

$$(\tilde{y}^1, ..., \tilde{y}^{m-n+1}, y^{m-n+2}, ..., y^m)$$

as the promised coordinate system.

3 The Pfaff and Darboux Theorems

Exterior differential systems generated by a single one-form are called *Pfaffian* systems. Like Frobenius systems, these also have nice local normal forms.

Theorem 3.1 (Pfaff) Let α be a one-form on a manifold M^n . Assume that in a neighborhood the number r (called the rank of α) defined by

$$\alpha \wedge (d\alpha)^r \neq 0, \quad \alpha \wedge (d\alpha)^{r+1} = 0$$

is constant. Then M has local coordinates $(w^1, ..., w^n)$ in which $\mathcal{I} = \langle \alpha \rangle$ becomes

$$\langle dw^1 + w^2 dw^3 + \dots + w^{2r} dw^{2r+1} = 0.$$

In fact, under a slightly stronger assumption there is a normal form for the contact form α itself, and not just its kernel.

Theorem 3.2 Let α be a one-form on a manifold M^n . Assume that in a neighborhood the numbers r and s defined by

$$\alpha \wedge (d\alpha)^r \neq 0, \qquad \alpha \wedge (d\alpha)^{r+1} = 0$$

and

$$(d\alpha)^s \neq 0, \qquad (d\alpha)^{s+1} = 0$$

are constant. Then M has local coordinates $(y^1, ..., y^n)$ in which α is given by

$$\begin{split} \alpha &= y^0 dy^1 + \ldots + y^{2r} dy^{2r+1}, \quad \text{if} \, r+1 = s \\ \alpha &= dy^1 + y^2 dy^3 + \ldots + y^{2r} dy^{2r+1}, \quad \text{if} \, r = s. \end{split}$$

There is also a similar local normal form for *closed* two-forms.

Theorem 3.3 (Darboux) Let Ω be a closed two-form on a manifold M such that the number r defined by

$$\Omega^r \neq 0, \qquad \Omega^{r+1} = 0$$

is constant. Then M has local coordinates $(w^1, ..., w^n)$ in which Ω is given by

$$\Omega = dw^1 \wedge dw^2 + \ldots + dw^{2r-1} \wedge dw^{2r}.$$

Example 3.4 Consider a single first order PDE of the form

$$F(x^1, ..., x^n, u, \frac{\partial u}{\partial x^1}, ..., \frac{\partial u}{\partial x^n}) = 0.$$

Assuming F is nice enough, it cuts out a hypersurface

$$M = \{ (x^1, ..., x^n, u, p_1, ..., p_n) \mid F(x^1, ..., x^n, u, p_1, ..., p_n) = 0 \} \subset J^1(\mathbb{R}^n, \mathbb{R}).$$

For $\theta = du - p_1 dx^1 - \dots - p_n dx^n$, the PDE is encoded by the EDS

$$\mathcal{I} = \langle \theta \rangle.$$

We have $\theta \wedge (d\theta)^n = 0$, while $\theta \wedge (d\theta)^{n-1}$ is nowhere vanishing, and therefore by the Pfaff theorem we can find local coordinates $(z, y^1, ..., y^{n-1}, v, q_1, ..., q_{n-1})$ on M on which \mathcal{I} is given by

$$\langle dv - q_1 dy^1 - q_2 dy^2 - \dots - q_{n-1} dy^{n-1} \rangle.$$

Now we observe that an n-dimensional integral manifold of \mathcal{I} is locally of the form

$$v = g(y^1, ..., y^{n-1}), \quad q_i = \frac{\partial g}{\partial y_i}(y^1, ..., y^{n-1})$$

for some function $g: \mathbb{R}^{n-1} \to \mathbb{R}$. In particular, it is tangent to the vector field $Z = \frac{\partial}{\partial z}$.

Remark 3.5 One can check that, up to a multiple, Z is given by

$$\sum_{i=1}^{n} \frac{\partial F}{\partial p_i} \frac{\partial}{\partial x^i} + \sum_{i=1}^{n} p_i \frac{\partial F}{\partial p_i} \frac{\partial}{\partial u} - \sum_{i=1}^{n} \left(\frac{\partial F}{\partial x^i} + p_i \frac{\partial F}{\partial u} \right) \frac{\partial}{\partial p_i}$$

This is called the Cauchy characteristic vector field of F, and this method of solving the PDE in a direction transverse to Z and then "thickening up" by the integral curves of Z is known as the method of characteristics.

4 The Cartan-Kahler Theorem

We now want to state (a baby version of) the Cartan-Kahler Theorem. First, some terminology is in order. An *integral element* of an EDS (M, \mathcal{I}) is an *n*-dimensional subspace $E \subset T_x M$ such that

$$\phi(v_1, \dots, v_n) = 0$$

for all $\phi \in \mathcal{I}^n$ and all $v_1, ..., v_n \in E$. Let $V_n(\mathcal{I}) \subset G_n(TM)$ denote the set of all *n*-dimensional integral elements of \mathcal{I} . We say $EinV_n(\mathcal{I})$ is an *ordinary element* if $V_n(\mathcal{I}) \subset G_n(TM)$ is cut out transversely near E (this can be made more precise using the natural local coordinates on $G_n(TM)$).

We also define the *polar space* H(E) of $E \in V_n(\mathcal{I})$ by

$$H(E) = \{ v \in T_x M \mid \kappa(v, e_1, ..., e_k) = 0 \forall \kappa \in \mathcal{I}^{k+1} \} \subset T_x M.$$

The polar space measures the possible extensions of E to a larger integral element. We define a function which measures the number of possible extensions by

$$r: V_k(\mathcal{I}) \to \{-1, 0, 1, 2, ...\}$$

 $r(E) = \dim H(E) - k - 1.$

So r(E) = -1 means there are no possible extensions, r(E) = 0 means there is a unique extension, and so on. We say $E \in V_n(\mathcal{I})$ is *regular* if r is constant in a neighborhood of E in $V_n^0(\mathcal{I})$.

The following theorem is not the most general form of Cartan-Kahler, but will suffice for this talk.

Theorem 4.1 (Cartan-Kahler) Let (M, \mathcal{I}) be a real analytic EDS. If $E \in V_n(\mathcal{I})$ contains a flag of subspaces

$$(0) = E_0 \subset E_1 \subset \ldots \subset E_{n-1} \subset E_n = E \subset T_p M$$

with $E_i \in V_i^r(\mathcal{I})$ for $0 \leq i < n$, then there is a real analytic n-dimensional integral manifold passing through p and tangent to E at p.

The reason for the flag is that the proof works by inductively extending an integral manifold to a larger one of dimension one greater. We call a flag $E_0, ..., E_n$ as above a *regular flag*. Notice that we do not require E_n to be a regular element.

The hypotheses of this theorem look rather difficult to check, but fortunately there is a simple test. We consider the sequence of numbers

$$0 \le c(E_0) \le c(E_1) \le \dots \le c(E_n)$$

with $c(E_k)$ defined to be the codimension of the polar space of E_k :

$$c(E_k) = \dim(T_p M) - \dim H(E_k)$$

Theorem 4.2 (Cartan's Test) Let (M, \mathcal{I}) be an EDS and $E_0, E_1, ..., E_n$ an integral flag of \mathcal{I} . Then $V_n(\mathcal{I})$ has codimension at least

$$c(F) = c(E_0) + c(E_1) + \dots + c(E_{n-1})$$

in $G_n(TM)$ at E_n . Moreover, $V_n(\mathcal{I})$ is actually a smooth submanifold of $G_n(TM)$ of codimension c(F) near E_n if and only if the flag F is regular.

Example 4.3 Let's see what the Cartan-Kahler theorem says for a Frobenius system (M^{n+s}, \mathcal{I}) , where \mathcal{I} is generated algebraically by linearly independent 1-forms $\theta^1, ..., \theta^s$. Pick an integral element $E \in V_n(\mathcal{I})$, i.e. $E \subset T_pM$ is n dimensional and $\theta^1, ..., \theta^s$ vanish on E. Pick any flag of subspaces

$$(0) = E_0 \subset E_1 \subset \ldots \subset E_{n-1} \subset E_n = E.$$

Then each polar space $h(E_i)$ is just E itself, hence each $c(E_i) = (n + s) - n = s$. Thus $c(E_0, E_1, ..., E_n) = ns$. On the other hand, since $V_n(\mathcal{I})$ consists of one element in each fiber of $G_n(TM)$, it has codimension ns. Hence Cartan's test tells us that the flag is regular, and therefore there is an integral n-manifold tangent to E. Of course, we already knew this from the Frobenius theorem.

Example 4.4 Consider the EDS $(M^{2n+1}, \mathcal{I} = \langle \alpha \rangle)$, where α is a contact 1-form. Then ker α defines a (non-integrable) hyperplane distribution on M, and an integral element Emust be isotropic with respect to $d\alpha$. Therefore the integral elements have dimension at most n, and the n-dimensional integral elements in T_pM are the Lagrangians of the symplectic vector space (ker $\alpha_p, d\alpha|_{\text{ker}\alpha_n}$). Let E be such a Lagrangian, and pick an flag

$$(0) = E_0 \subset E_1 \subset \ldots \subset E_n = E.$$

Then one easily checks that we have

$$c(E_o) = (2n+1) - (2n) = 1$$

$$c(E_1) = (2n+1) - (2n-1) = 2$$

...

$$c(E_{n-1}) = (2n+1) - (n+1) = n,$$

and therefore

$$c(E_0, E_1, ..., E_n) = \frac{n(n+1)}{2}$$

On the other hand, the Lagrangian Grassmanian of $(\ker \alpha_p, d\alpha|_{\ker \alpha_p})$ has dimension $\frac{n(n+1)}{2}$, hence $V_n(\mathcal{I})$ has codimension $\frac{n(n+1)}{2}$. Therefore we can apply Carta's test applies. In contact geometric lingo, Cartan-Kahler says that we can find a Legendrian of $(M, \ker \alpha)$ which is tangent to E.

References

- [Bry] Robert Bryant. Nine Lectures on Exterior Differential Systems, July 1999.
- [BGC⁺] Robert L Bryant, PA Griffiths, SS Chern, Robert B Gardner, and Hubert L Goldschmidt. Exterior differential systems. Springer, 1991.
- [IL] Thomas Andrew Ivey and Joseph M Landsberg. Cartan for beginners: differential geometry via moving frames and exterior differential systems. (2003).