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1 Exterior Differential Systems and Basic Examples

Definition 1.1 An exterior differential system (EDS) on a smooth manifold M consists of
a graded differential ideal I of the ring Ω∗(M) of differential forms on M . In particular,
I being differential means it is closed under the exterior derivative d : Ωp(M) → Ωp+1(M),
while graded means it decomposes as

I =
∞⊕
p=0

Ip,

where Ip = I ∩ Ωp(M).

We will denote by 〈γ1, ..., γk〉 the differential ideal generated by γ1, ..., γk, i.e. the set of
elements of Ω∗(M) of the form

α1 ∧ γ1 + ...+ αk ∧ γk + β1 ∧ dγ1 + ...+ βk ∧ dγk,

for some α1, ..., αk, β1, ..., βk ∈ Ω∗(M). We also denote by 〈γ1, ..., γk〉alg the “algebraic” ideal
(not necessarily closed under d) consisting of elements of the form

α1 ∧ γ1 + ...+ αk ∧ γk.

The basic problem of EDS is to find integral submanifolds of M , i.e. submanifolds ι :
N ↪→M such that ι∗I = (0).

Example 1.2 Consider the system of ordinary differential equations

y′(x) = (xyz)17

z′(x) = cosh(x+ y + z).

∗Notes for a talk given on 2/20/14 at Stanford University. Our primary reference is [Bry]
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We can model this system by an EDS with M = R3 and

I = 〈dy − (xyz)17dx, dz − cosh(x+ y + z)dx〉.

Note that the 1-dimensional integral manifolds of I are precisely the integral curves of the
vector field

∂

∂x
+ (xyz)17

∂

∂y
+ cosh(x+ y + z)

∂

∂z
.

Example 1.3 Consider of the system of partial differential equations given by

∂u

∂x
(x, y) = F (x, y, u(x, y))

∂u

∂y
(x, y) = F (x, y, u(x, y)).

We can model this by an EDS in R3, with

I = 〈dz − F (x, y, z)dx−G(x, y, z)dy〉.

Note that a surface N ⊂M is integral if and only if both of the vector fields

∂

∂x
+ F (x, y, z)

∂

∂z
and

∂

∂y
+G(x, y, z)

∂

∂z

are tangent to N . Of course, there need not be any 2-dimensional integral manifolds, for
example if F (x, y, z) = y and G(x, y, z) = −x.

Example 1.4 Complex curves in C2 Let M = C2 with coordinates z = x+iy and w = u+iv,
and let

I = 〈Re(dz ∧ dw), Im(dz ∧ dw)〉 = 〈dx ∧ du− dy ∧ dv, dx ∧ dv + dy ∧ du〉.

In this case any real curve in C2 is integral, since I1 = (0). On the other hand, a real surface
N ⊂ C2 is integral if and only if it is a complex curve.

Note that N can be written locally as a graph {(z, u(z)+iv(z)}, with u+iv a holomorphic
function of z, whenever dx and dy are linearly independent on N . The condition dx∧dy 6= 0
on N is sometimes called an independence condition. Note that u+ iv being holomorphic is
equivalent to

∂u

∂x
− ∂v

∂y
=
∂u

∂y
+
∂v

∂x
= 0,

i.e. I (with the independence condition) is a model for the Cauchy-Riemann equations.
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Example 1.5 Consider a system of first order partial differential equations of the form

F i(x, z,
∂z

∂x
) = 0, i = 1, ..., r,

for x = (x1, ..., xa) independent variables, z = (z1, ..., zb) dependent variables, and
∂z

∂x
the

Jacobian matrix of z with respect to x. Assume that the common zero set Ma+b+ab−r of {F i}
in Ra × Rb × Rab (with coordinates (x, z,y)) is cut out transversely, i.e. that (F 1, ..., F r) :
Ra × Rb × Rab → Rr is a submersion. We define an EDS on M by

〈dz1 −
a∑
i=1

y1i dx
i, ..., dzb −

a∑
i=1

ybidx
i〉.

Then the n-dimensional integral submanifolds N ⊂ M of I, satisfying the independence
condition dx1 ∧ ... ∧ dxa 6= 0, are precisely the graphs of solutions of the original PDE
system.

Example 1.6 We can certainly use this same principle to encode higher order PDE systems
as well. For example, an equation of the form

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0,

with M7 = {F (x, y, u, p, q, r, s, t) = 0} ⊂ R8 a smooth hypersurface, can be encoded using

I = 〈du− pdx− qdy, dp− rdx− sdy, dq − sdx− tdy〉.

2 The Frobenius Theorem

In what follows, we call an EDS (M, I) Frobenius if I = 〈I1〉alg with dim I1p = r constant as
p varies.

Theorem 2.1 Let (Mm, I) be an EDS which is Frobenious. Then each p ∈ M has a local
coordinate chart (y1, ..., ym) on which

I = 〈dy1, ..., dym−n〉.

In particular, the local n-dimensional integral manifolds of I are just slices

{y1 = c1, ..., ym−n = cm−n}.

Example 2.2 Recall that the system

∂u

∂x
(x, y) = F (x, y, u(x, y))

∂u

∂y
(x, y) = F (x, y, u(x, y)).
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became the EDS with I = 〈ζ〉, where

ζ = dz − F (x, y, z)dx−G(x, y, z)dy.

Now the condition for the Frobenius theorem is that 〈ζ〉 = 〈ζ〉alg, which by simple linear
algebra is equivalent to

0 = ζ ∧ dζ = (Fy −Gx +GFz + FGz)dx ∧ dy ∧ dz.

Hence, if F and G satisfy the auxiliary equation

Fy −Gx +GFz − FGz = 0,

then the Frobenius Theorem gives for any (x0, y0, z0) ∈ R3 a function u(x, y) defined near
(x0, y0) with

u(x0, y0) = z0

ux = F (x, y, u(x, y))

uy = G(x, y, u(x, y)).

Remark 2.3 For α a 1-form on an odd-dimensional manifold M2n+1, we have seen that
α ∧ dα = 0 implies the hyperplane distribution kerα gives a foliation on M . At the other
extreme, if α ∧ dα ∧ ... ∧ dα 6= 0 ∈ Ω2n+1(M), the hyperplane distribution kerα is called
a contact structure. In many ways, contact structures behave like symplectic structures on
even dimensional manifolds.

Remark 2.4 Before proving the Frobenius theorem, we would like to relate our version to
the perhaps more familiar version about distributions in the tangent plane of a manifold
M . Namely, if M has an n-plane distribution D which is involutive, then M admits local
coordinate charts near any point in which D is spanned by the first n coordinate vector fields.
Here involutivity means that the Lie bracket of any two (locally defined) vector fields tangent
to D is again tangent to D. We show that this version is equivalent to the version stated at
the beginning of this section.

Firstly, assume (M, I) is Frobenius, and let D be the distribution consisting of tangent
vectors on which I1 vanishes. For θ ∈ I1 and X, Y local vector fields tangent to D, we have

dθ(X, Y ) = Xθ(Y )− Y θ(X)− θ([X, Y ]),

with θ(X) and θ(Y ) vanishing since X and Y are tangent to D. Since dθ(X, Y ) ∈ 〈I1〉alg,
we also have dθ(X, Y ) = 0. Therefore θ([X, Y ]) = 0, so [X, Y ] is also tangent to D.

Now assume that D is an involutive n-plane distribution, and let I be the differential
ideal generated by 1-forms vanishing on D. We wish to show that I is Frobenius, i.e. that
dθ ∈ I ∈ 〈I1〉alg for any θ ∈ I1. Let e1, ..., en+r be a local frame for TM , with e1, ..., en
tangent to D, and let θ1, ..., θn+r be the dual frame for T ∗M . Then we can expand dθ as

dθ =
∑

1≤i<j≤n

Aijθ
i ∧ θj +

∑
1≤i≤n, n+1≤j≤n+r

Bijθ
i ∧ θj +

∑
n+1≤i<j≤n+r

Cijθ
i ∧ θj.
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Note that the formula for dθ in the previous paragraph shows that dθ(X, Y ) whenever X and
Y are tangent to D, and so in particular dθ(ei, ej) = 0 whenever 1 ≤ i, j ≤ n. Therefore we
have Aij = 0 for all ij. Since θj ∈ I1 whenever n + 1 ≤ j ≤ n + r, we have dθ in the form∑

i βi ∧ γi for γi ∈ I1, hence dθ ∈ dθ ∈ I ∈ 〈I1〉alg.

Proof (Frobenius theorem) Assume I is generated by m − n linearly independent 1-forms
θ1, ..., θm−n, and let D be the distribution on which the θi vanish. Following [BGC+], we
proceed by induction on n. Firstly, if n = 1 then D is line field and we can find “flowbox
coordinates”. Now assume the theorem is true up to n− 1.

We start by picking x : M → R a smooth function such that θ1∧ ...∧ θm−n∧ dx 6= 0 near
the point p. Then 〈θ1, ..., θm−n, dx〉 is Frobenius, and so by the induction hypothesis we can
find local coordinates (y1, ..., ym) with

〈dy1, ..., dym−n−1〉 = 〈θ1, ..., θm−n, dx〉.

Then we can write

dx =
n−m∑
i=1

aidy
i + am−n+1dy

m−n+1,

θi =
n−m∑
j=1

cijdy
j + cim−n+1dy

m−n+1, 1 ≤ i ≤ n−m,

for ai, c
i
j smooth functions. Assuming without loss of generality that am−n+1 6= 0, we can

solve for dym−n+1 in the first equation and use this to rewrite the second equation as

θi =
n−m∑
j=1

c̃ijdy
j + f idx

for smooth functions c̃ij, f
i. Observe that the matrix of functions c̃ij is invertible near p (since

otherwise we could find a nontrivial dependency between the θi and dx). Therefore we can
write I = 〈θ̃1, ..., ˜θn−m〉, where

θ̃i = dyi + eidx

for ei smooth functions and θi =
∑n−m

j=1 c̃ij θ̃
j. Therefore we have dθ̃i = dei ∧ dx, and hence

dei ∧ dx ≡ 0 mod {θ̃i}.

Therefore we can write

dei = adx+
n−m∑
j=1

bijdy
j
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for some functions a, bij. But now we observe that dx and each dei have expansions involv-
ing dy1, ..., dym−n+1 but not dym−n+2, ..., dym, and therefore x and each ei are functions of
y1, ..., ym−n+1 only. Therefore the same is true of the θ̃i.

Now let V be the submanifold through p obtained by setting ym−n+2, ..., ym to be constant.
Observe that I|V is a codimension one Frobenius system, and hence we can found coordinates
(ỹ1, ..., ỹm−n+1) on V such that I|V is generated by dỹ1, ..., dỹm−n. Then we can take

(ỹ1, ..., ỹm−n+1, ym−n+2, ..., ym)

as the promised coordinate system.

3 The Pfaff and Darboux Theorems

Exterior differential systems generated by a single one-form are called Pfaffian systems. Like
Frobenius systems, these also have nice local normal forms.

Theorem 3.1 (Pfaff) Let α be a one-form on a manifold Mn. Assume that in a neighbor-
hood the number r (called the rank of α) defined by

α ∧ (dα)r 6= 0, α ∧ (dα)r+1 = 0

is constant. Then M has local coordinates (w1, ..., wn) in which I = 〈α〉 becomes

〈dw1 + w2dw3 + ...+ w2rdw2r+1 = 0.

In fact, under a slightly stronger assumption there is a normal form for the contact form
α itself, and not just its kernel.

Theorem 3.2 Let α be a one-form on a manifold Mn. Assume that in a neighborhood the
numbers r and s defined by

α ∧ (dα)r 6= 0, α ∧ (dα)r+1 = 0

and

(dα)s 6= 0, (dα)s+1 = 0

are constant. Then M has local coordinates (y1, ..., yn) in which α is given by

α = y0dy1 + ...+ y2rdy2r+1, if r + 1 = s

α = dy1 + y2dy3 + ...+ y2rdy2r+1, if r = s.

There is also a similar local normal form for closed two-forms.
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Theorem 3.3 (Darboux) Let Ω be a closed two-form on a manifold M such that the number
r defined by

Ωr 6= 0, Ωr+1 = 0

is constant. Then M has local coordinates (w1, ..., wn) in which Ω is given by

Ω = dw1 ∧ dw2 + ...+ dw2r−1 ∧ dw2r.

Example 3.4 Consider a single first order PDE of the form

F (x1, ..., xn, u,
∂u

∂x1
, ...,

∂u

∂xn
) = 0.

Assuming F is nice enough, it cuts out a hypersurface

M = {(x1, ..., xn, u, p1, ..., pn) | F (x1, ..., xn, u, p1, ..., pn) = 0} ⊂ J1(Rn,R).

For θ = du− p1dx1 − ...− pndxn, the PDE is encoded by the EDS

I = 〈θ〉.

We have θ ∧ (dθ)n = 0, while θ ∧ (dθ)n−1 is nowhere vanishing, and therefore by the Pfaff
theorem we can find local coordinates (z, y1, ..., yn−1, v, q1, ..., qn−1) on M on which I is given
by

〈dv − q1dy1 − q2dy2 − ...− qn−1dyn−1〉.

Now we observe that an n-dimensional integral manifold of I is locally of the form

v = g(y1, ..., yn−1), qi =
∂g

∂yi
(y1, ..., yn−1)

for some function g : Rn−1 → R. In particular, it is tangent to the vector field Z =
∂

∂z
.

Remark 3.5 One can check that, up to a multiple, Z is given by

n∑
i=1

∂F

∂pi

∂

∂xi
+

n∑
i=1

pi
∂F

∂pi

∂

∂u
−

n∑
i=1

(
∂F

∂xi
+ pi

∂F

∂u

)
∂

∂pi

This is called the Cauchy characteristic vector field of F , and this method of solving the PDE
in a direction transverse to Z and then “thickening up” by the integral curves of Z is known
as the method of characteristics.
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4 The Cartan-Kahler Theorem

We now want to state (a baby version of) the Cartan-Kahler Theorem. First, some ter-
minology is in order. An integral element of an EDS (M, I) is an n-dimensional subspace
E ⊂ TxM such that

φ(v1, ..., vn) = 0

for all φ ∈ In and all v1, ..., vn ∈ E. Let Vn(I) ⊂ Gn(TM) denote the set of all n-dimensional
integral elements of I. We say EinVn(I) is an ordinary element if Vn(I) ⊂ Gn(TM) is cut
out transversely near E (this can be made more precise using the natural local coordinates
on Gn(TM)).

We also define the polar space H(E) of E ∈ Vn(I) by

H(E) = {v ∈ TxM | κ(v, e1, ..., ek) = 0∀κ ∈ Ik+1} ⊂ TxM.

The polar space measures the possible extensions of E to a larger integral element. We define
a function which measures the number of possible extensions by

r : Vk(I)→ {−1, 0, 1, 2, ...}
r(E) = dimH(E)− k − 1.

So r(E) = −1 means there are no possible extensions, r(E) = 0 means there is a unique
extension, and so on. We say E ∈ Vn(I) is regular if r is constant in a neighborhood of E in
V 0
n (I).

The following theorem is not the most general form of Cartan-Kahler, but will suffice for
this talk.

Theorem 4.1 (Cartan-Kahler) Let (M, I) be a real analytic EDS. If E ∈ Vn(I) contains a
flag of subspaces

(0) = E0 ⊂ E1 ⊂ ... ⊂ En−1 ⊂ En = E ⊂ TpM

with Ei ∈ V r
i (I) for 0 ≤ i < n, then there is a real analytic n-dimensional integral manifold

passing through p and tangent to E at p.

The reason for the flag is that the proof works by inductively extending an integral manifold
to a larger one of dimension one greater. We call a flag E0, ..., En as above a regular flag.
Notice that we do not require En to be a regular element.

The hypotheses of this theorem look rather difficult to check, but fortunately there is a
simple test. We consider the sequence of numbers

0 ≤ c(E0) ≤ c(E1) ≤ ... ≤ c(En)

with c(Ek) defined to be the codimension of the polar space of Ek:

c(Ek) = dim(TpM)− dimH(Ek).

8



Theorem 4.2 (Cartan’s Test) Let (M, I) be an EDS and E0, E1, ..., En an intgral flag of I.
Then Vn(I) has codimension at least

c(F ) = c(E0) + c(E1) + ...+ c(En−1)

in Gn(TM) at En. Moreover, Vn(I) is actually a smooth submanifold of Gn(TM) of codi-
mension c(F ) near En if and only if the flag F is regular.

Example 4.3 Let’s see what the Cartan-Kahler theorem says for a Frobenius system (Mn+s, I),
where I is generated algebraically by linearly independent 1-forms θ1, ..., θs. Pick an integral
element E ∈ Vn(I), i.e. E ⊂ TpM is n dimensional and θ1, ..., θs vanish on E. Pick any
flag of subspaces

(0) = E0 ⊂ E1 ⊂ ... ⊂ En−1 ⊂ En = E.

Then each polar space h(Ei) is just E itself, hence each c(Ei) = (n + s) − n = s. Thus
c(E0, E1, ..., En) = ns. On the other hand, since Vn(I) consists of one element in each fiber
of Gn(TM), it has codimension ns. Hence Cartan’s test tells us that the flag is regular, and
therefore there is an integral n-manifold tangent to E. Of course, we already knew this from
the Frobenius theorem.

Example 4.4 Consider the EDS (M2n+1, I = 〈α〉), where α is a contact 1-form. Then
kerα defines a (non-integrable) hyperplane distribution on M , and an integral element E
must be isotropic with respect to dα. Therefore the integral elements have dimension at most
n, and the n-dimensional integral elements in TpM are the Lagrangians of the symplectic
vector space (kerαp, dα|kerαp). Let E be such a Lagrangian, and pick an flag

(0) = E0 ⊂ E1 ⊂ ... ⊂ En = E.

Then one easily checks that we have

c(Eo) = (2n+ 1)− (2n) = 1

c(E1) = (2n+ 1)− (2n− 1) = 2

...

c(En−1) = (2n+ 1)− (n+ 1) = n,

and therefore

c(E0, E1, ..., En) =
n(n+ 1)

2
.

On the other hand, the Lagrangian Grassmanian of (kerαp, dα|kerαp) has dimension
n(n+ 1)

2
,

hence Vn(I) has codimension
n(n+ 1)

2
. Therefore we can apply Carta’s test applies. In con-

tact geometric lingo, Cartan-Kahler says that we can find a Legendrian of (M, kerα) which
is tangent to E.
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