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1. Introduction

Classical mechanics can be viewed as the geometry of Poisson manifolds. We begin by
recalling their definition.

Definition 1.1. A Poisson algebra is an associative algebra A over a field K (fixed, of
characteristic zero), equipped with a Lie bracket {−,−} such that {x,−} is a derivation
for any x ∈ A, i.e. {x, yz} = {x, y}z + y{x, z}.

Definition 1.2. A Poisson structure on a manifold M is a Poisson bracket {−,−} on the
algebra C∞(M).

Example 1.3. On T ∗Rn with position coordinates q1, ..., qn and momentum coordinates
p1, ..., pn, the standard bracket is given by

{f, g} =
n∑

i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
Example 1.4. Any symplectic manifold has a natural Poisson structure.

A Poisson structure determines the time evolution of the system. Namely, if for any
“observable” f : M → R, we have df/dt = {H, f}, where H is the Hamiltonian of the
system (for example of the form H(q, p) = p2/2m + V (q)). As a sanity check, we have
{H,H} = 0, i.e. conservation of energy.

In quantum mechanics, observables are instead given by Hermitian operators on some
Hilbert space. Viewing the algebra of observables as the primary detail, we can formally
pass from classical to quantum mechanics by defining a new associative product ∗h on
C∞(M) such that:

(1) limh→0 f ∗h g = fg

(2) limh→0
f ∗h g − g ∗h f

2h
= {f, g}.

The first condition represents the fact that quantum mechanics reduces to classical mechan-
ics in the small h limit, whereas the second condition says that the commutator with respect
to ∗h agrees with the Poisson bracket to first order. Said slightly differently, (C∞(M), ∗h)
is a “deformation of (C∞(M), ·) in the direction of {−,−}”.

Question 1.5. Does ∗h actually exist for a given Poisson manifold? If so, can we classify
all possible ∗h?
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2. Deformations of associative algebras

Let A be a finite dimensional associative algebra over K. Consider a new product
a ∗ b = ab + hf(a, b), for some f ∈ hom(A ⊗ A,A). Here we view ∗ as a product on
A⊗K[h]/(h2), i.e. we are studying the “first order deformation theory” of A.

Exerise 2.1. In terms of f , the associativity condition (a ∗ b) ∗ c = a ∗ (b ∗ c) is equivalent
to

f(ab, c) + f(a, b)c = f(a, bc) + af(b, c).(2.1)

However, certain deformations should be considered equivalent. Namely, for T any linear
automorphism of A⊗K[h]/(h2) of the form T (a) = a + hg(a), for g ∈ hom(A,A), we put
∗ ∼ ∗T , where

a ∗T b := T (T−1(a) ∗ T−1(b).(2.2)

In other words, two deformations are equivalent if one can be conjugated to the other by
a linear automorphism which is trivial modulo h.

Exerise 2.2. For a ∗ b = ab + hf(a, b), we can write a ∗T b = ab + hfT (a, b), with

fT (a, b) := f(a, b)− g(a)b− ag(b) + g(ab).(2.3)

In summary, first order deformations of A up equivalence are in one-to-one correspon-
dence with f ∈ hom(A⊗ A,A) satisfying (2.2), modulo (2.3) for any g ∈ hom(A,A). The
latter is also known as HH2(A,A), the degree two Hochschild cohomology of A.

3. Hochschild cohomology and first order deformations

Define the Hochschild complex CC∗(A,A) is of the form

hom(K, A)→ hom(A,A)→ hom(A⊗A,A)→ hom(A⊗A⊗A,A)→ ...,

where d : hom(A⊗(n−1), A)→ hom(A⊗n, A) is given by

(df)(a1, ..., an) = a1f(a2, ..., an) +
n−1∑
i=1

(−1)if(a1, ..., aiai+1, ..., an) + (−1)nf(a1, ..., an−1)an.

The Hochschild cohomology is then HH i(A,A) := ker d|hom(A⊗i,A)/im d.

Example 3.1. Consider the associative algebra A = K[x]/(x2 − 1), i.e. the group ring of
Z/2. We claim that HH2(A,A) = 0, meaning there are no deformations of A, at least up
to first order. This perhaps reflects the rigidity of finite groups.

Example 3.2. Now consider A = K[x]/(x2). We claim that HH2(A,A) is one dimensional,
with a nontrivial cocycle given by f(x, x) = h, f(x, 1) = f(1, x) = f(1, 1) = 0. In other
words, A deforms to K[x]/(x2 − h), which is essentially the group ring from the previous
example.
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4. The Hochschild DGLA

It turns out that the Hochschild complex CC∗(A,A) also has a natural Lie bracket.

Namely, for f ∈ hom(A⊗n, A) and g ∈ hom(A⊗m, A), we define [f, g] ∈ hom(A⊗(n+m−1), A)
by

[f, g](a1, ..., an+m−1) =

n∑
i=1

(−1)imf(a1, ..., ai−1, g(ai, ...ai+m−1), ai+m, ..., an+m−1)

+

m∑
j=1

(−1)jng(a1, ..., aj−1, f(aj , ...ai+n−1), aj+n, ..., an+m−1).

Definition 4.1. A differential graded Lie algebra (DGLA) is a graded vector spae L,
together with [−,−] and d, where

• [−,−] is graded antisymmetric and satisfies a graded Jacobi identity

• d is a differential and satisfies the graded Leibniz rule: d[x, y] = [dx, y]+(−1)|x|[x, dy].

It turns out that CC∗(A,A) is in fact a DGLA. Now consider a deformed product of
the form a ∗ b = ab + f(a, b). We claim that ∗ is associative if and only if df + 1

2 [f, f ] =
0, i.e. f satisfies the “Maurer–Cartan equation” in CC∗(A,A). As for equivalences of
deformations, consider any linear automorphism T : A→ A. As before, we set ∗ ∼ ∗T for
a∗T b := T (T−1(a)∗T−1(b)). Since the Lie algebra of the general group of A is hom(A,A),
we can uniquely write T = eg for g ∈ hom(A,A). Claim: for a ∗ b = ab + f(a, b), we have
a ∗T b = ab + fT (a, b), with fT given by

fT = egfe−g + egde−g.(4.1)

In this situation, one says that f and fT are “gauge equivalent”.

Remark 4.2. In any “nice” DGLA, we can define M to be the set of Maurer–Cartan
elements modulo gauge equivalence. Here a Martan–Cartan element is by definition an
element x of degree one such that dx + 1

2 [x, x] = 0. The gauge group is the Lie group
associated to the Lie algebra formed by all elements of degree zero, and it naturally acts
on Maurer–Cartan elements as in (4.1).

5. Obstructions to deformations

Question 5.1. Suppose f1 is a first order deformation of the associative algebra A, i.e.
a ∗ b = ab + hf1(a, b) is an associative product on A ⊗ K[h]/(h2). Can we extend this

to a “formal deformation”, i.e. a product a ∗ b = ab + f̃(a, b) on K[[h]], where f̃ =
hf1 + h2f2 + h3f3 + ...?

One can check that associativity of the product a ∗ b = ab + f̃(a, b) is equivalent to the

equation df̃ + 1
2 [f̃ , f̃ ] = 0, which is equivalent to the system of equations

dfn + 1
2

n−1∑
i=1

[fi, fn−i] = 0 for all n.(5.1)
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Moreover, one can check that 1
2

∑n−1
i=1 [fi, fn−i] is closed with respect to the Hochschild

differential, and we are wondering if it is exact. In particular, it follows that vanishing of
HH3(A,A) is a sufficient condition to be able to solve the system (5.1), and in this case
we say that the deformation theory of A is “unobstructed”.

6. Examples of deformation problems

There is a metaprinciple observed by Deligne is that every deformation problem (over a
field of characteristic zero) is governed by some DGLA.

Example 6.1. If L is a finite dimensional Lie algebra, there is a story closely resembling
the above one for associative algebras, except with the Hochschild complex replaced by the
“Chevalley complex”. The Chevalley complex of a Lie algebra is again a DGLA and its
cohomology is the Lie algebra cohomology of L, which in nice cases is just the cohomology
of the Lie group exp(L).

Example 6.2. Similarly, for the deformation theory of commutative algebras, one replaces
the Hochschild complex with the “Harrison complex”.

Example 6.3. Let X be a complex manifold with holomorphic tangent bundle TX . “Nearby”
complex structures on X up to equivalence correspond to Maurer–Cartan elements modulo
gauge equivalence in the DGLA given by Γ∗ = Γ(X,Ω0,∗

X (TX)). Here any element of Γ∗

can be written locally as F (z1, ..., zn)∂zi ⊗ dzi1 ∧ .... ∧ dzij , and the differential is ∂.

7. quantum groups

Definition 7.1. A Hopf algebra is an associative algebra A, equipped with a coproduct
∆ : A → A ⊗ A and an algebra homomorphism A → Aop satisfying various compatibility
conditions.

Let G be a semisimple Lie group with Lie algebra g. Recall that the universal enveloping
algebra U(g) is the free associative algebra generated by elements of g, modulo the relations
xy − yx = [x, y] for x, y ∈ g. In fact, U(g) is an example of a Hopf algebra, with ∆(x) :=
x⊗ 1 + 1⊗ x and S(x) := −x.

Now the idea is to study deformations of G by deforming U(g) as a Hopf algebra. In
the case at hand, viewing U(g) as an associative algebra we have:

Proposition 7.2. HH2(U(g), U(g)) = 0.

This actually implies that all formal deformations of A (i.e. over K[[h]]) do not change
U(g) as an associative algebra. However, there can still be interesting deformations of U(g)
as a Hopf algebra. Recall that the Lie algebra sl2C is generated by variables X,Y,H, with
Lie brackets

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H.
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The quantum group Uh(sl2C) is by definition the Hopf algebra with generators X,Y,H,
with:

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] =
ehH − e−hH

eh − e−h

S(H) = −H, S(X) = −Xe−hH , S(Y ) = −ehHY

∆(X) = X ⊗ ehH + 1⊗X, ∆(Y ) = Y ⊗ 1 + e−hH ⊗ Y,

∆(H) = H ⊗ 1 + 1⊗H.

8. Deforming Poisson manifolds

Let M be a smooth manifold, and set A = C∞(M).

Definition 8.1. A smooth deformation of A is an associative product ∗ : A⊗A→ A[[h]]
of the form f ∗ g = fg +

∑∞
k=1 ck(f, g)hk, such that

• c1(f, g)− c1(g, f) = 2{f, g}
• each ck : A×A→ A is a bidifferential operator.

The latter condition means that in local coordinates ck is of the form f⊗g 7→
∑

I,J QI,J(x)∂I(f)∂J(g),
where I, J are multi-indices and QI,J is a smooth function.

We now consider two DGLAs. Firstly, let D∗(X) denote the subcomplex of CC∗(A,A)
consisting of Hochschild cochains which are polydifferential operators. Secondly, let T ∗(X) =
Γ(X,Λ∗TX) denote polyvector fields on X, equipped with the trivial differential and the
“Schouten–Nijenhuis” bracket (this extends the usual bracket of holomorphic vector fields).

Proposition 8.2. Maurer–Cartan elements modulo gauge equivalence in T ∗(X) are in
one-to-one correspondence with Poisson structures on X modulo diffeomorphism.

Theorem 8.3. (Kontsevich) There is a quasi-isomorphism T ∗(X) ' D∗(X).

It moreover follows that the sets of Maurer–Cartan elements modulo gauge equivalence
coincide for both sides. Since D∗(X) governs smooth deformations of A, this shows that
every Poisson manifold can be canonically quantized, resolving the question from the be-
ginning.
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