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1 Introduction

Recall for that a map f : S1 → C \ {0} the homotopy class is uniquely characterized by
an integer called the “winding number”. There are many ways to compute this number, for
example

• 1

2πi

∫
df

f

• counting the algebraic number of points in the pre-image of a regular value of f/|f |
(essentially counting the number of times the curve crosses say the x-axis).

Recall that, for a topological space X, π(X) = [Si, X] denotes the homotopy classes of
pointed maps from Si (the i-dimensional sphere) to X. So the point here is that π1(C\{0}) =
Z.

To generalize the winding number to higher dimensions, we might ask “what is πi(GL(n,C))?”.
What about πi(GL(n,R))? Note that we have a deformation retration

C \ {0} ' S1.

In fact, by a general theorem of Iwasawa, any Lie group deformation retracts onto a maximal
compact subgroup (think of this as a fancier version of the above). In particular, we have
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homotopy equivalences

GL(n,C) ' U(n)

GL(n,R) ' O(n).

Remark 1.1 In this talk we’ll focus on the real version of Bott periodicity, which involves
periods of length 8. There is also a complex version involving periods of length 2, which is
often simpler.

So we have isomorphisms π(GL(n,R)) ∼= πi(O(n)). Unfortunately, in general homotopy
groups can be extremely mysterious. For example, πi(S

n) is one of the first computations
one would naturally ask about, and these are completely unknown in general. Similarly,
πi(O(n)) is unknown in general.

However, recall that there are inclusions O(n) ⊂ O(n+ 1) given by sending A ∈ O(n) to
the block matrix (

A 0
0 1

)
.

It’s easy to show that the induced map πi(O(n)) → πi(O(n + 1)) is an isomorphism for n
sufficiently large. Setting

O = ∪nO(n),

we have πi(O) = πi(O(n)) for n sufficiently large.
In 1957, Bott calculated these “stable” homotopy groups using infinite dimensional Morse

theory. The result:

i πi(O)
0 Z/2
1 Z/2
2 0
3 Z
4 0
5 0
6 0
7 Z
8j + k πk(O)

The fact that the answer is periodic with period 8 is completely surprising and has
repercussions throughout many parts of mathematics.
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2 Clifford Algebras

Given how revolutionary the extension from R to C was, people were eager to see if C could
be further extended to new types of numbers. Since dimR C = 2, it was natural to look for
a three dimensional algebra over R. Ideally it would have nice properties, like be a division
algebra (meaning nonzero elements have inverses).

Famously, after failing for a long time for find such an object, in 1843 William Hamil-
ton realized that something interesting exists in four dimensions. We now call these the
quaternions (denoted by H in honor of Hamilton):

H = R〈e1, e2 | e1e2 = −e2e1, e21 = e22 = −1〉.

The quaternions are an example of an (associative) normed division algebra over R.

Remark 2.1 Quaternions are not commutative!

It turns out that besides R,C, and H, there is only one other normed division algebra
over R, the octonions O, discovered shortly afterwards by John Graves and Arthur Cayley
independently.

• dimR O = 16

• The octonions are neither commutative nor associative!

Observe that H is obtained from R by adjoining two anticommuting square roots of −1.
In 1876, William Clifford generalized H in a different way from O by defining the Clifford
algebra:

Ck = R〈e1, ..., ek | eiej = −ejei for i 6= j, e2i = −1〉.

Equivalently, let

T (Rk) =
∞⊕
i=0

T i(Rk) = (R)⊕ (Rk)⊕ (Rk ⊗ Rk)⊕ ...

be the tensor algebra over Rk, and let Qk be the negative definite quadratic form on Rk,
given by

Qk(x1, ..., xk) = −x21 − ...− x2k.

Then the Clifford algebra is a quotient

Ck = C(Qk) := T (Rk)/〈x⊗ x−Qk(x) · 1 | x ∈ Rk〉,

where 〈x⊗ x−Qk(x) · 1 | x ∈ Rk〉 denotes the two-sided ideal generated by elements of the
form x⊗ x−Qk(x) · 1.

We make the following observations:
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• This construction works equally well for any quadratic form Q, giving rise a Clifford
algebra C(Q). The choice Q = Qk corresponds to adding square roots of −1.

• For Q ≡ 0, we have Ck(Q) = Λ(Rk), the exterior algebra over Rk. In fact, we always
have

dimR(C(Q)) = dimR Λ(Rk) = 2k,

with a basis given by {ei1ei2 ...eik , i1 < i2 < ... < ik} for {ei} ⊂ Rk any basis.

• C(Q) is characterized by the following universal property:

For any linear map φ : Rk → A into an R-algebra with unit A, such that ∀x ∈ Rk we
have φ(x)2 = Q(x) ·1, there exists a unique algebra homomorphism φ : C(q)→ A such
that φ ◦ iQ = φ.

It will be useful to also define

C ′k := C(−Qk) = R〈e′1, ..., e′k | e′ie′j = −e′je′i for i 6= j, e′2i = 1〉.

Determining the algebras Ck:
Let F = R,C, or H, and let F (n) denote the n× n matrix algebra over F .

Exercise 2.2

• F (n) ∼= R(n)⊗R F

• R(n)⊗R R(m) ∼= R(nm)

• C⊗R C ∼= C⊕ C

• H⊗R C ∼= C(2)

• H⊗R H ∼= R(4)

Proposition 2.3

• Ck ⊗R C
′
2
∼= C ′k+2

• C ′k ⊗R C2
∼= Ck+2

Proof Define ψ : (R′)k+2 → Ck ⊗R C
′
2 by

ψ(e′i) =

{
ei−2 ⊗ e′1e′2 : 2 < i ≤ k
1⊗ e′i : 1 ≤ i ≤ 2

We compute:
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for 2 < i ≤ k,

ψ(e′i)
2 = e2i−2 ⊗ e′1e′2e′1e′2 = (−Qk)(e

′
i)(1⊗ 1)

for 1 ≤ i ≤ 2,

ψ(e′i)
2 = (1⊗ e′i)2 = (−Qk)(e

′
i)(1⊗ 1).

By the universal property of C ′k+2, we get an algebra homomorphism C ′k+2 → Ck ⊗R C
′
2.

By observing what it does on bases, this is easily seen to be an isomorphism. Similarly, we
get an isomorphism Ck+2

∼= C ′k ⊗R C2.

Exercise 2.4

• C1
∼= C

• C ′1 ∼= R⊕ R

• C2
∼= H

• C ′2 ∼= R(2).

Using the above ingredients, we can easily fill out the table:

k Ck C ′k Irreps of Ck
0 R R R
1 C R⊕ R C
2 H R(2) H
3 H⊕H C(2) H−,H+

4 H(2) H(2) H2

5 C(4) H(2)⊕H(2) C4

6 R(8) H(4) R8

7 R(8)⊕ R(8) C(8) R8
−,R8

+

8 R(16) R(16) R16

8j + k Ck ⊗R R(16j) C ′k ⊗R R(16j)

Remark 2.5 For the last column we are using the standard fact that the matrix ring F (n)
admits only the obvious irreducible representation, namely the represetation F n on which
F (n) acts by matrix multiplication.

For example, we have

Ck+8
∼= Ck ⊗R C

′
2 ⊗R C2 ⊗R C

′
2 ⊗R C2

∼= Ck ⊗R C4 ⊗R C4

∼= Ck ⊗R R(16).

Note that, up to tensoring with R(16j), the table is 8-periodic! This is Bott periodicity!
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3 Vector Fields on Spheres

Recall the “hairy ball theorem”: S2 does not admit a nonvanishing vector field. The slogan
is “you can’t comb a hairy ball”! Actually, the Euler characteristic χ gives the number of
zeroes of a generic vector field. We have

χ(S2n) = 2

χ(S2n+1) = 0,

so this immediately shows that the hairy ball theorem is true for any even dimensional sphere
S2n. It is false for odd dimensional spheres, but how false?. That is, we can ask

Question 3.1 How many linearly independent vector fields does S2n+1 admit?

Remark 3.2 If Sn admits n linearly independent vector fields, we say it is parallelizable.
It is a deep result that this occurs only when n = 0, 1, 3, 7. This is intimately related to the
fact that R,C,H, and O are the only normed division algebras over R.

The answer to Question 3.1 was given by Adams in 1962:

There are exactly as many linearly indepedent vectors fields on Sn as can be naturally
constructed using Clifford algebras.

Remark 3.3 We will show below how to construction vector fields on spheres using Clifford
algebras. The other direction, i.e. showing that this is optimal, is much harder and was
proved using the Adams operations in K theory.

Our main tool for construction vector fields on spheres will be the following:

Proposition 3.4 If Rn admits the structure of a Ck-module, then Sn−1 admits k orthonor-
mal vector fields.

Proof We give just a sketch of the proof. Note that Rn being a Ck-module is the same as
having a ring homomorphism

φ : Ck →Mn(R).

By averaging any inner product on Rn over the group Γ := 〈φ(e1), ..., φ(ek)〉, we can as-
sume that Ck acts orthogonally on Rn. One can then check that, for x ∈ Rn, the vectors
x, φ(e1)x, ..., φ(ek)x ∈ Rn are mutually orthogonal with respect to the inner product on Rn.
Indeed, it suffices to show that

〈φ(ei)x, x〉 = −〈φ(ei)x, x〉

for any i and

〈φ(ei)x, φ(ej)x〉 = −〈φ(ei)x, φ(ej)x〉

for any i 6= j.
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Definition 3.5 We define nk to be the smallest n such that Rn is a simple Ck-module (i.e.
the dimension over R of an irreducible representation of Ck) and define ρ(n) to be the largest
k such that nk|n (i.e. the largest k such that Rn is a module over Ck).

Since Rn is a Cρ(n)-module, the above proposition shows that Sn−1 admits ρ(n) linearly
independent vector fields. We can now restate Adams’ theorem more formally as

Theorem 3.6 (Adams) The maximal number of linearly independent vectors fields on Sn−1

is precisely ρ(n).

Exercise 3.7 For n = 16a2bm with m odd and 0 ≤ b ≤ 3, we have

ρ(n) = 8a+ 2b − 1.

The first few values of ρ are given by:

n 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
ρ(n+ 1) 1 3 1 7 1 3 1 8 1 3 1 7 1 3 1 9

Remark 3.8 The ρ(n)’s are called “Radon-Hurwitz numbers”.

4 Division Algebras

Our main tool for studying division algebras will be

Proposition 4.1 If K is an n-dimensional normed division algebra over R, then Rn admits
the structure of a Ck−1-module.

Proof Firstly we’ll need:

Exercise 4.2 Show that the norm || · || on K is induced by an inner product 〈·, ·〉. Hint:
by averaging, find some inner product on K which in invariant under left multiplication by
elements k ∈ K with norm 1.

Now let

Im(K) := {k ∈ K | 〈k, 1〉 = 0}.

Let Lk : K→ K denote left multiplication by k. We’ll show that L2
k = −I for any k ∈ Im(K)

with ||k|| = 1. It will then follow by the universal property of Ck−1 that we have a map

L : Cn−1 →Mn(R)

as desired.
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Now for k ∈ Im(K) with ||k|| = 1, set l =
k + 1√

2
, so that ||l|| = 1 and Lk, Ll ∈ O(n).

Then we have

I = LlL
t
l =

1

2
(Lk + I)(Ltk + I)

=
1

2
(LkL

t
k + Lk + Ltk + I)

= I +
1

2
(Lk + Ltk),

and therefore Lk = −Ltk and hence L2
k = (Lk)(−Ltk) = −I, as desired.

Theorem 4.3 (Hurwitz) If K is an m-dimensional normed division algebra, then m =
1, 2, 4, 8.

Proof By Theorem 4.1, we must have nm|m. Looking at the table:

k + 1 Ck nk
1 R 1
2 C 2
3 H 4
4 H⊕H 4
5 H(2) 8
6 C(4) 8
7 R(8) 8
8 R(8)⊕ R(8) 8
9 R(16) 16
10 C(16) 32

it is clear that this can only happen when m = 1, 2, 4, or 8.

Remark 4.4 The above result remains valid even if we drop the assumption that K be
normed. Also, with a little more work we can show that K = R,C,H, or O.
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