
The Ubiquity of ADE Classifications in Nature

Kyler Siegel

March 11, 2014

1 Introduction

The so-called “simply laced Dynkin diagrams” are the graphs Al (l ≥ 2), Dl (l ≥ 4), E6, E7,
and E8. There are two regular families {Al} and {Dl}, and three exceptional graphs E6, E7,
and E8. They are given pictorially by:

Al α1 α2

. . .
αl−1 αl

Dl α1 α2

. . .
αl−2 αl−1

αl

E6 α1 α2 α3 α4 α5

α6

E7 α1 α2 α3 α4 α5 α6

α7

E8 α1 α2 α3 α4 α5 α6 α7

α8

It is well known that these diagrams play a key role in the classification of Lie groups
and Lie algebras, along with the other Dynkin diagrams {Bl}, {Cl}, F4 and G2. However,
the ADE diagrams also classify many other diverse collections of objects in mathematics
and physics, many of which have seemingly nothing to do with Lie groups and Lie algebras.
The diagrams arise naturally (and often very mysteriously) when studying things like quiver
representations, singularity theory, linear algebra, hyper-Kahler geometry, finite subgroups
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of Lie groups, and even conformal field theories and string theory. It is still not entirely
understood why these objects all have a common classification, although recent advances in
string theory claim to shed light on this. The goal of this talk is to give a bird’s eye overview
of various examples of ADE classifications. It will be far from comprehensive and contain
no proofs. Our primary reference is the excellent survey [HHSV].

2 The Simply Laced Dynkin Diagrams

Consider a finite connected graph Γ. We want to think of Γ as encoding a finite collection of
vectors in Euclidean space, and thereby associate to Γ a reflection group generated by the
orthogonal reflections about each vector. Concretely, let W (Γ) be the “Weyl group” of Γ
given as follows. W (Γ) has one abstract generator s for each vertex s of Γ, subject to the
relations s2 = 1, (ss′)2 = 1 if there is no edge joining s and s′, and (ss′)3 = 1 if there is an
edge joining s and s′.

Theorem 2.1 The Weyl group W (Γ) associated to Γ is finite if and only if Γ is one the
diagrams above:

Al (l ≥ 2), Dl (l ≥ 4), El (l = 6, 7, 8).

Remark 2.2 We interpret the nodes not connected by an edge as orthgonal vectors, and
vectors connected by an edge as vectors forming an angle of 2π/3. The “simply laced”
condition is that we’re not allowing other angles.

3 Platonic solids

The oldest ADE classification is that of the Platonic solids, known to the ancient Greeks.
Recall that a Platonic solid is a polyhedron with all faces congruent regular q-gons and with
p faces meeting at each vertex, for some numbers p and q. Let

q = # of sides of each face

p = # of faces meeting at each vertex

f = # of faces

e = # of edges

v = # of vertices

To classify the Platonic solids, recall that a regular q-gon has interior angle π(1 − 2/q).
Since p of them meet at a vertex, we must have

2π > pπ(1− 2/q).
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{q,p} name f e v symmetry group
{q, 2} dihedron 2 q q D(q)
{2, p} hosohedron p p 2 D(q)
{3, 3} tetrahedron 4 6 4 T12

{4, 3} cube 6 12 8 O24

{3, 4} octahedron 8 12 6 O24

{5, 3} dodecahedron 12 30 20 I60

{3, 5} icosahedron 20 30 12 I60

This places severe restrictions on the possibilities for p and q, which are listed in the following
table. Note that we are allowing the degenerate cases of p = 2 and q = 2.

Given a Platonic solid, we can construct a dual solid by placing the new vertices at the
center of each face. This gives the dualities

dihedron ←→ hosohedron

tetrahedron ←→ tetrahedron

cube ←→ octahedron

dodecahedron ←→ icosahedron.

Notice in the table that dual polyhedra have the same symmetry groups. Here D(q) denotes
the dihedral group of the regular q-gon, i.e. the symmetry group in which we allow reflections.
T12, O24, and I60 denote the tetrahedral group, octahedral group, and icosahedral group of
orders 12, 24 and 60 respectively.

If we append the cyclic group Z/(lZ) to this list, we get our ADE picture:

Al ←→ Z/(lZ)

Dl ←→ D(l)

E6 ←→ T12

E7 ←→ O24

E8 ←→ I60.

To make this correspondence more compelling, we need to see how to associate the graphs
to the groups. For this we’ll need McKay Correspondence. Let G ⊂ SO(3) be a finite sub-
group, and let G̃ denote the pre-image of G under the double cover SU(2) → SO(3). Let
R1, R2, R3, ... be the irreducible complex representations of G̃ and let R denote the funda-
mental (2-dimensional) representation of SU(2), restrict to G̃. Then each representation
R⊗Ri decomposes into irreducibles as

R⊗Rj = ⊕jmijRj

for some mij. Construct the McKay graph Γ(G) of G with one node for each Ri and labeled
edges according to the mij.
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Theorem 3.1 The assignment G 7→ Γ(G) sets up a one-to-one correspondence between
finite subgroups of SO(3) and the affine Dynkin diagrams

Ãl (l ≥ 2), D̃l (l ≥ 4), Ẽl (l = 6, 7, 8).

The affine Dynkin diagrams are the same as the ADE diagrams except that we have to add
one node and one edge to each.

4 Matrices over N with norm less than 2

In this section we mostly follow the exposition of [GdLHJ], Chapter 1. Firstly, as motivation
we have the following elementary theorem due to Kronecker:

Theorem 4.1 (Kronecker) Let X be a finite matrix over Z. Then if ||X|| < 2, we have
||X|| = 2 cos(π/q) for some q ∈ {2, 3, 4, ...}.

Now let Matfin({0, 1}) denote the set of finite matrices (not necessarily square) each entry
equal to 0 or 1. We can encode an m × n matrix X ∈ Matfin({0, 1}) as a bicolored graph
Γ(X) as follows. Γ(X) has m black vertices b1, ..., bm and n white vertices w1, ..., wn. There
are no edges joining vertices of the same color, and there is an edge joining bi and wj if and
only if Xi,j 6= 0. For example, if

X =

(
1 0 1 1 0 0
0 1 0 0 1 0

)
,

then Γ(X) is given by

w1 w3 w4 w2 w5 w6

b1 b2

Definition 4.2 • Two matrices X1, X2 ∈ Matm,n(R) are pseudo-equivalent is X2 =
P1X1P2 for P1 ∈ Matm,m(R) and P2 ∈ Matn,n(R) permutation matrices.

• A matrix X ∈ Matm,n is indecomposable if it has no row or column of zeroes and

it is not pseudo-equivalent to a block diagonal matrix of the form

(
X ′ 0
0 X ′′

)
with

X ′ ∈ Matm′,n′(R) and X ′′ ∈ Matm′′,n′′(R), m′, n′,m′′, n′′ ≥ 1.

Theorem 4.3 The encoding described above sets up a bijection between
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• Indecomposable matrices in Matfin(N) of (operator) norm less than 2, up to pseudo-
equivalence.

• The following graphs, equipped with bicolorations, up to isomorphism of bicolored graphs:

Al (l ≥ 2), Dl (l ≥ 4), El (l = 6, 7, 8).

5 Quiver representations

Definition 5.1 • A quiver Q is a multidigraph, i.e. a graph with directed edges where
we allow repeated edges. We will alway assume Q is finite and connected).

• A representation of Q over a field k assigns to each vertex of Q a (finite dimensional)
vector space over k and to each arrow of Q a linear map between the corresponding
vector spaces.

• For V1, V2 representations of Q, the direct sum representation V1⊕ V2 is formed taking
direct sums of the corresponding vector spaces and linear maps. A quiver representation
V is indecomposable if it cannot be wrriten as a direct sum of nonzero representations.

• Two Q representations are isomorphic if, for each vertex of Q, there is an isomorphism
of the corresponding vector spaces, such that the natural square diagrams these form
along with the edge morphisms are commutative.

Example 5.2 Consider the quiver with a single node and a singular directed edge (from the
node to itself). A representation consists of a square matrix M , and two representations are
isomorphic if and only if the associated matrices M and M ′ are conjugate (and in particular
have the same dimension). Thus over an algebraically closed field k, the indecomposable
representations are those with M having a single block in its Jordan normal form, and
therefore the indecomposable representations are classifed by their size and the eigenvalue
appearing.

It turns out that a quiver Q falls into one of three disjoint classes, depending on how
complicated its representation theory is.

Definition 5.3 • Q is finite type if, up to isomorphism, there are only finitely many
indecomposable representations of Q.

• Q is tame if the indecomposable representations in every dimension occur in a finite
number of one-parameter families.

• Q is wild if the indecomposable representations occur in families of at least two param-
eters.

Example 5.4 Consider the quiver with two nodes and three directed edges from the first
node to the second. This is an example of a wild quiver.
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The ADE classification of finite type quivers is given by the following theorem of Gabriel.

Theorem 5.5 (Gabriel) A quiver Q is of finite type if and only if its underlying undirected
graph is given by one of the following Dynkin diagrams:

Al (l ≥ 2), Dl (l ≥ 4), El (l = 6, 7, 8).

In fact, we also have a complete understanding of the indecomposable representations of
Q as follows. Let p1, ..., pl denote the vertices of Q. For V a representation of Q, let n(V )
denote the vector n(V ) = (dimV (p1), ..., dimV (pl)).

Theorem 5.6 (Gabriel) For Q a finite type quiver, the map V 7→ n(V ) sets up a bijective
correspondence between indecomposable represetnations of Q and the set of positive roots of
the underlying Dynkin diagram of V .

There is also an extension to the case of tame quivers.

Theorem 5.7 (Nazarova) A quiver Q is of tame type if and only if its underlying undirected
graph is given by one of the following affine Dynkin diagrams:

Ãl (l ≥ 2), D̃l (l ≥ 4), Ẽl (l = 6, 7, 8).

6 Simple singularities

Let f : Cn → C be a holomorphic map with an isolated critical point. For simplicity assume
the critical point is 0 ∈ Cn and we have f(0) = 0. Then df(0) = 0 but df(z) 6= 0 for z 6= 0
sufficiently close to 0.

Definition 6.1 The critical point 0 is nondegenerate (or complex Morse) if

det

(
∂2f

∂zi∂zj
(0)

)
6= 0.

Recall we have a very simple local normal form for nondegenerate critical points:

Proposition 6.2 (Morse lemma) If 0 is a nondegenerate critical point of f , then there is a
biholomorphic change of coordaintes φ such that

fφ(z1, ..., zn) = z2
1 + ...+ z2

n.

In this section we are interested in the following question.

Question 6.3 If 0 is a degenerate critical point of f , is there still a local normal form?

Under suitable assumptions on the critical point, the answer is “yes”!
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Definition 6.4 • Two germs of holomorphic mappings f, g are equivalent if g = fφ for
some biholomorphic change of coordinates φ.

• A germ f is called simple if there is a finite list of germs such that every small pertur-
bation of f is equivalent to a germ from this list.

Non-Example 6.5 The function f : C3 → C, f(x, y, z) = x3+y3+z3 is not simple. In fact,
there is a one-parameter family of non-equivalent germs that arise from small perturbations
of f .

Here is the fundamental theorem about simple singularities:

Theorem 6.6 (Arnold) The germ of f near 0 is simple if and only if f is equivalent to a
germ in the following list:

xk+1 + y2 + z2
3 + ...+ z2

n type Ak (k ≥ 0)

x2y + yk−1 + z2
3 + ...+ z2

n type Dk (k ≥ 0)

x3 + y4 + z2
3 + ...+ z2

n type E6 (k ≥ 0)

x3 + xy3 + z2
3 + ...+ z2

n type E7 (k ≥ 0)

x3 + y5 + z2
3 + ...+ z2

n type E8 (k ≥ 0)

Now again let f be a holomorphic function Cn → C with an isolated critical point at 0
with f(0) = 0, and fix a small ball B ⊂ Cn around 0 and let V 2n−2 = f−1(t) ∩ B for some
t ∈ C sufficiently small.

Theorem 6.7 (Milnor) V 2n−2 is homotopy equivalent to a wedge of µ spheres Sn−1. In
particular, Hn−1(V 2n−2,Z) ∼= Zµ is equipped with an integral bilinear intersection form.

After adding variables and a corresponding non-degenerate quadratic form to f (this
process is called stabilization), we can assume n ≡ 3 (mod 4). Now we consider the symmetric
intersection form Q on Hn−1(V 2n−2,Z).

Theorem 6.8 (Tjurina) Q is negative definite if and only if the singularity of f at 0 is
simple.

It is convenient to encode the intersection form Q on Hn−1(V 2n−2,Z) as a labelled graph
Γ(G) as follows. The nodes of the diagram correspond to “vanishing cycles”, i.e. elements of
Hn−1(V2n−2,Z) with square −2 (it turns out these form a basis for Hn−1). We join two nodes
by an edge labelled with k if the intersection number between the corresponding vectors is
equal to k.

Theorem 6.9 The intersection form graphs Γ(G) of the simple singularities Ak, Dk, Ek (as
listed in Theorem 6.6) are given precisely by relevent corresponding Dynkin diagrams.
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We can always Morsify the critical point of f at 0, i.e. perturb it slightly such that
the isolated critical point becomes µ (complex) Morse critical points inside U with different
critical values. If we remove the critical values from C, then we can speak of the monodromy
as we travel around loops in the resulting puncutured C. That is, we can look at how a fixed
regular fiber V is mapped to itself as we travel along a path in C avoiding the critical points.
The group of all such maps (up to isotopy) is the monodromy group of the singularity.

Theorem 6.10 The following are equivalent:

1. the singularity of f is simple

2. the monodromy group of the singularity is finite

3. the monodromy group of the singularity is isomorphic to the corresponding Weyl group
of type Al, Dl, E6, E7, or E8 (see Section 2).

Theorem 6.11 If two simple singularities have isomorphic monodromy groups then they
are (stably) equivalent.

To give a sense of how common or rare simple singularities are:

Theorem 6.12 The set of all nonsimple germs of functions of n ≥ 3 variables has codi-
mension 6.

So every s < 6 parameter family of functions can be generically perturbed such that all the
functions have simple singularities.
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