The problem $\coprod_i B^4(a_i) \stackrel{s}{\hookrightarrow} B^4(\mu)$ Gromov 1985, McDuff–Polterovich 1994, Biran 1997, Li–Liu 2001, Li–Li 2002, Buse–Pinsonnault 2013, Karshon–Kessler 2014

21 septembre 2025

Notation

$$X_k: k$$
-fold complex blow-up of $\mathbb{C}\mathsf{P}^2$
 $H_2(X_k; \mathbb{Z})$ has basis $\{L, E_1, \dots, E_k\}$
 $\ell := \mathsf{PD}(L), \ e_i := \mathsf{PD}(E_i)$
 $(d; \boldsymbol{m}) := (d; m_1, \dots, m_k) := dL - \sum_{i=1}^k m_i E_i \in H_2(X_k; \mathbb{Z})$
 $(\mu; \boldsymbol{a}) := (\mu; a_1, \dots, a_k) := \mu\ell - \sum_{i=1}^k a_i e_i \in H^2(X_k; \mathbb{R})$
 $K := -3L + \sum_{i=1}^k E_i = -\mathsf{PD}(c_1(X_k))$

Notation

$$X_k: k$$
-fold complex blow-up of $\mathbb{C}\mathsf{P}^2$ $H_2(X_k;\mathbb{Z})$ has basis $\{L, E_1, \dots, E_k\}$ $\ell := \mathsf{PD}(L), \ e_i := \mathsf{PD}(E_i)$ $(d; \mathbf{m}) := (d; m_1, \dots, m_k) := dL - \sum_{i=1}^k m_i E_i \in H_2(X_k;\mathbb{Z})$ $(\mu; \mathbf{a}) := (\mu; a_1, \dots, a_k) := \mu\ell - \sum_{i=1}^k a_i e_i \in H^2(X_k;\mathbb{R})$ $K := -3L + \sum_{i=1}^k E_i = -\mathsf{PD}(c_1(X_k))$ K -symplectic cone $\boxed{\mathcal{C}_K(X_k)} \subset H^2(X_k;\mathbb{R}) :=$ set of cohomology classes that can be represented by a symplectic form ω on X_k such that $c_1(\omega) = c_1(X_k) = \mathsf{PD}(-K)$

Notation

 X_k : k-fold complex blow-up of $\mathbb{C}P^2$ $H_2(X_k; \mathbb{Z})$ has basis $\{L, E_1, \dots, E_k\}$

$$(d; \mathbf{m}) := (d; m_1, \dots, m_k) := dL - \sum_{i=1}^k m_i E_i \in H_2(X_k; \mathbb{Z})$$

$$(\mu; \mathbf{a}) := (\mu; a_1, \dots, a_k) := \mu\ell - \sum_{i=1}^k a_i e_i \in H^2(X_k; \mathbb{R})$$

$$K := -3L + \sum_{i=1}^k E_i = -\operatorname{PD}(c_1(X_k))$$

$$K\text{-symplectic cone } \boxed{\mathcal{C}_K(X_k)} \subset H^2(X_k; \mathbb{R}) :=$$
set of cohomology classes that can be represented by a symplectic form ω on X_k such that $c_1(\omega) = c_1(X_k) = \operatorname{PD}(-K)$
set of exceptional classes $\boxed{\mathcal{E}_K(X_k)} \subset H_2(X_k; \mathbb{Z}) :=$
classes E with $-K \cdot E = c_1(E) = 1$, $E \cdot E = -1$ that can be represented by smoothly embedded spheres

By Seiberg-Witten Taubes (Li-Liu) : $\mathcal{E}_K(X_k) =$
set of classes E with $E \cdot E = -1$ that can be represented by smoothly embedded ω -symplectic spheres.

 $\ell := PD(L), e_i := PD(E_i)$

Theorem. The following are equivalent.

- (i) There exists an embedding $\coprod_{i=1}^k B^4(a_i) \stackrel{s}{\hookrightarrow} B^4(\mu)$.
- (ii) $\alpha := (\mu; \mathbf{a}) = \mu \ell \sum_{i=1}^k a_i e_i \in \overline{\mathcal{C}_K}(X_k)$

Theorem. The following are equivalent.

- (i) There exists an embedding $\coprod_{i=1}^k B^4(a_i) \stackrel{s}{\hookrightarrow} B^4(\mu)$.
- (ii) $\alpha := (\mu; \mathbf{a}) = \mu \ell \sum_{i=1}^k a_i e_i \in \overline{\mathcal{C}_K}(X_k)$
- (iii) $\alpha^2 \geqslant 0$ and $\alpha(E) \geqslant 0$ for all $E \in \mathcal{E}_K(X_k)$.

Theorem. The following are equivalent.

- (i) There exists an embedding $\coprod_{i=1}^k B^4(a_i) \stackrel{s}{\hookrightarrow} B^4(\mu)$.
- (ii) $\alpha := (\mu; \mathbf{a}) = \mu \ell \sum_{i=1}^k a_i e_i \in \overline{\mathcal{C}_K}(X_k)$
- (iii) $\alpha^2 \geqslant 0$ and $\alpha(E) \geqslant 0$ for all $E \in \mathcal{E}_K(X_k)$.
- (iv) $\|\boldsymbol{a}\| \leqslant \mu$ and $a_1, \ldots, a_k \geqslant 0$, and : $\sum_{i=1}^k a_i m_i \leqslant \mu d$ for every vector $(d; \boldsymbol{m}) \in \mathbb{Z}_{\geq 0}^{k+1}$ that solves the Diophantine system

$$\sum_{i=1}^{k} m_i = 3d - 1, \qquad \sum_{i=1}^{k} m_i^2 = d^2 + 1$$
 (DS)

and that reduces to $(0; -1, 0, \dots, 0)$ under repeated standard Cremona moves.

(v) $\|\boldsymbol{a}\| \leqslant \mu$, and $(\mu; \boldsymbol{a})$ reduces to a reduced vector under repeated standard Cremona moves.



Here:

For $k \geqslant 3$ define the **Cremona transform** Cr: $\mathbb{R}^{1+k} \to \mathbb{R}^{1+k}$ as the linear map taking $(x_0; x_1, \dots, x_k)$ to

$$(x_0 + \delta; x_1 + \delta, x_2 + \delta, x_3 + \delta, x_4, \ldots, x_k)$$

where
$$\delta := x_0 - (x_1 + x_2 + x_3)$$

$$(x_0; x_1, \ldots, x_k)$$
 is **ordered** if $x_1 \geqslant \cdots \geqslant x_k$.

standard Cremona move := order, apply Cr, order

An ordered vector $(x_0; x_1, \dots, x_k)$ is **reduced** if $\delta \ge 0$ and $x_i \ge 0$ for all i.

A first application:

Theorem (Packing Stability, Biran).

For **every** $k \ge 9$, the ball $B^4(1)$ can be fully filled by k equal balls :

$$\coprod_k \mathsf{B}^4(a) \overset{s}{\hookrightarrow} \mathsf{B}^4(1) \quad \text{whenever the volume allows it.}$$

Proof. Let $(d; \mathbf{m})$ be a solution of the Diophantine system (DS). By (DS1) in (iv) :

$$\sum_{i=1}^k m_i = 3d - 1 \leqslant \sqrt{k} d.$$

Take $a_i := 1$ and $\mu := \sqrt{k}$.

Then (iv) \Rightarrow (i) shows that there exists an embedding

$$\coprod_{i=1}^k \mathsf{B}^4(1) \stackrel{\mathfrak{s}}{\hookrightarrow} \mathsf{B}^4(\sqrt{k}) \quad \Box$$