
Optimization on Symplectic Embeddings

Alexander Gajewski, Eli Goldin, Jakwanul Safin,
Navtej Singh, Junhui Zhang

July 2019

1 Introduction

In this paper we develop new constrained optimization techniques for learning
symplectic maps, like the maps that result from Hamiltonian flows in mechan-
ical systems. We apply these techniques to the problem of finding symplectic
embeddings of certain symplectic domains into the ball, a problem which has
seen exciting theoretical developments recently, but about which little remains
known. We show that our techniques can learn embeddings competitive with
those constructed by hand in past theoretical works, and confirm a conjecture
about embeddings of 8- and 10-dimensional simplices using novel simplices dis-
covered by our algorithm.

1.1 Background

Symplectic maps originate from the Hamiltonian formulation of classical me-
chanics. In Hamiltonian mechanics, the configuration of a mechanical system
is determined by a point in phase space M, the space of all possible positions
and momenta for the objects in the system.1 Every dimension of position corre-
sponds to a dimension of momentum, so phase space is always even-dimensional.
For the purposes of this paper, phase space can be considered as any subdo-
main of R2n, with coordinates written as (x1, x2, . . . , xn, y1, y2, . . . , yn) where
each (xi, yi) pair corresponds to the position and momentum in the ith coordi-
nate. R2n can also be considered as Cn under the identification of z` = x`+ iy`.
A path through phase space corresponds to a “movie” of the system playing
out over time. Paths through phase space are governed by a system of dif-
ferential equations, which in turn are determined by the Hamiltonian of the
system, a real-valued function H : M → R that measures the total energy of
each configuration. The Hamiltonian differential equations are then given by:(

ẋ
ẏ

)
= J∇H (1)

1This space is made mathematically rigorous as a manifold, which intuitively is a space
that locally can be mapped to and from a subset of Euclidean space in a smooth way. For
our purposes, it suffices to think of this as a closed subset of R2n with nonempty interior, and
whose boundary is “sufficiently smooth.”

1

where x and y are vectors in Rn representing position and momentum, respec-
tively, and J is the canonical symplectic matrix,

J =

(
0 −I
I 0

)
When viewing phase space as Cn, the canonical symplectic matrix is equivalent
to rotating each coordinate by i. Recall that equation 1 determines the tra-
jectory of the mechanical system given an initial configuration. In one sense,
these equations yield a trajectory, which is a function τzH(t) : [0,∞) → M
and outputs the configuration of the system after time t, starting at configu-
ration z = (x, y) ∈ M. However, one can also view a trajectory as a function
of the initial configuration, fixing the time t that the “movie” will play for.
In this interpretation, the Hamiltonian differential equations give a function
ΦtH(z) : M →M, which is known as the time-t flow of the system. We often
work with the time-1 flow, in which case we drop the t and write simply ΦH(z).

One of the most important results of classical physics is that Hamiltonian
flows preserve the canonical symplectic matrix. That is, if one considers the
Jacobian D(ΦtH) of the Hamiltonian flow, then D(ΦtH)JD(ΦtH)T = J . Any map
satisfying this condition is called symplectic, and symplectic maps are central
to the field of symplectic geometry. This is a remarkably strong condition, and
it immediately follows that symplectic maps preserve volume, meaning that
the volume of some domain is the same as the volume of its image under the
symplectic map.2

In this paper, we concern ourselves with symplectic embeddings, i.e. a smooth
embedding satisfying the symplecticity condition. Until recently, mathemati-
cians and physicists believed that a symplectic embedding exists from any space
to any other space of equal volume. When Mikhail Gromov proved his non-
squeezing theorem in 1985, mathematicians realized that the community had
a rather poor understanding of symplectic embeddings.3 Even today, mathe-
maticians know very little about when symplectic embeddings may or may not
exist. A thorough understanding of when symplectic embeddings exist should
help illuminate the nature of Hamiltonian mechanics itself.

We will focus on constructing symplectic embeddings, Φ : M ↪→ N , where
M , N are convex subdomains of R2n. If such an embedding exists we say that
M symplectically embeds into N , or M ↪→ N .

1.2 Definitions

Definition 1.
disk: D(a) =

{
z ∈ C | π‖z‖2 ≤ a

}
2This result is known as Liouville’s theorem, and is one of the earliest known results about

Hamiltonian dynamics.
3Gromov proved that a symplectic ball cannot symplectically embed into an infinite cylin-

der with a smaller radius despite the cylinder having infinite volume. The formal statement
says that B(a′) embeds into Z(a) if and only if a′ ≤ a. Definitions in §1.2.

2

Ellipsoid: E2n(a1, a2, . . . , an) = {z ∈ Cn |
n∑
i=1

π‖zi‖2

ai
≤ 1}

Ball: B2n(a) =
{
z ∈ Cn | π‖z‖2 ≤ a

}
= E2n(a, a, . . . , a︸ ︷︷ ︸

n

)

Cylinder: Z2n(a) =
{
z ∈ Cn | π‖z1‖2 ≤ a

}
= D(a)× Cn−1

Polydisk: P 2n(a1, a2, . . . , an) =
{
z ∈ Cn | π‖zi‖2 ≤ ai, i = 1, 2, ..., n

}
= D(a1)×· · ·×D(an)

2 Methodology

2.1 Integrating Hamiltonians (symplectically)

In this work, we develop techniques for optimizing symplectic maps computa-
tionally. In order to do this, is it is necessary to first develop some parameter-
ization of symplectic maps. While we experimented with several techniques
(see sections A.2, ??, A.3 for more details), our most successful technique
consists of parameterizing time-dependent Hamiltonians as sequences of neu-
ral networks, and numerically integrating the resulting Hamiltonian differential
equations with a symplectic integrator.

2.1.1 What is symplectic integration?

Recall that symplectic maps are a generalization of time-1 flows of arbitrary
Hamiltonians (i.e. functions from R2n → R). In fact, every symplectomorphism
can be approximated by the flow of some Hamiltonian. Thus, one way to pa-
rameterize symplectomorphisms is to represent Hamiltonians H with function
approximators like neural networks or polynomials, and then numerically inte-
grate the resulting flow with e.g. Euler’s method:

xn+1 = xn +∇yH(xn, yn)δ

yn+1 = yn −∇xH(xn, yn)δ

where xn and yn are vectors representing the position after the nth step of inte-
gration, and δ is the amount of time that passes during each step of integration.
Although Hamiltonian flows are indeed symplectic, numerical integration can
introduce a significant amount of error, making the resulting approximation not
symplectic. Because we want to learn symplectic embeddings, it is important
that the resulting maps be as close to symplectic as possible, and the error
introduced by Euler’s method is high enough to result in embeddings that are
provably impossible, making this technique unacceptable for our purposes (see
appendix A.3 for examples of such pathological cases).

One solution to this issue is symplectic integration. Symplectic integrators
are rules for numerical integration, like Euler’s method, but that guarantee
that the resulting approximate flow is symplectic. Leapfrog integration is one
such technique, and works for split Hamiltonians, i.e. Hamiltonians of the form

3

H(x, y) = V (x) + T (y). Each step of leapfrog is defined by the following func-
tions:

xn+1/2 = xn +∇yT (yn)
δ

2
yn+1 = yn +∇xV (xn+1/2)δ

xn+1 = xn+1/2 +∇yT (yn+1)
δ

2

One step of leapfrog integration gives an approximation for the time-δ flow
of the Hamiltonian, and so to approximate the time-1 flow of a Hamiltonian
one can divide [0, 1] into chunks and repeatedly perform iterations of leapfrog
with appropriately sized δs. Importantly, the resulting map is guaranteed to
be symplectic regardless of the accuracy of the approximation. As our goal is
to learn symplectomorphisms, and not to accurately compute time-1 flows of
specific Hamiltonians, even a step size of δ = 1 suffices.

2.1.2 Why/what neural networks?

Recall that with our method, we use leapfrog integration to symplectically in-
tegrate learned Hamiltonians. Thus, we need a way of parameterizing Hamil-
tonians, i.e. real-valued differentiable functions on R2n. Two such parameteri-
zations are polynomials and neural networks. With polynomials, we represent
split Hamiltonians as follows:

H(x, y) = V (x) + T (y)

V (x) = θ11x1 + θ12x2 + · · ·+ θ1nxn+

θ2(1,1)x1x1 + θ2(1,2)x1x2 + · · ·+ θ2(1,n)x1xn + · · ·+ θ2(n,n)xnxn+

...

θd(1,1,...,1)x
d
1 + θd(1,1,...,2)x

d−1
1 x2 + · · ·+ θd(n,n,...,n)x

d
n

and likewise T (y) as a polynomial in the variables y1, . . . , yn. Here, θ represents
the parameters of the model, to be optimized during training. By increasing
the degree d of the polynomial representation, it is possible to approximate any
continuous function to arbitrary precision. However, the degree may need to
be very high, and the number of parameters is Θ(nd), exponential in d, making
polynomials inefficient when n > 1.

Neural networks are alternating compositions of arbitrary affine and element-
wise nonlinear maps. Like polynomials, they can theoretically approximate any
continuous function to arbitrary precision. However, empirically neural net-
works have been found to efficiently approximate many functions of interest,
and importantly to be efficiently trainable. With neural networks, we represent
split Hamiltonians as follows:

H(x, y) = V (x) + T (y)

V (x) = σ(bd +Wdσ(bd−1 +Wd−1σ(· · · b1 +W1x)))

4

and likewise T (y), where the Wk are matrices, the bk are bias vectors, and σ
is an elementwise nonlinear function. Because H is meant to be scalar-valued,
the matrix Wd has only a single row, and the vector bd only a single entry.
The W1, . . . ,Wd and b1, . . . , bd together form the parameters θ to be optimized
during training.

We were able to achieve results under both models, but in dimensions greater
than 2, higher degree polynomials took significantly longer to compute than
neural networks of similar expressivity. For this reason, we decided to perform
our experiments primarily with neural networks.

2.1.3 Universal approximation by Leapfrog integration (Henon-like
maps)

In this section, we outline a proof that iterated Leapfrog integration of time-
dependent neural network Hamiltonians can approximate any symplectomor-
phism. At first, this may seem obvious, because any symplectomorphism of
R2n can be approximated by the time-1 flow of some Hamiltonian, and any
Hamiltonian can be approximated by some sufficiently large neural network.
Thus, the argument would continue, sufficiently many steps of numerical inte-
gration of these neural network Hamiltonians should be able to approximate
any symplectomorphism.

However, recall that leapfrog integration only works for split Hamiltonians,
i.e. Hamiltonians of the form H(x, y) = V (x) + T (y), and a priori it is un-
clear whether all Hamiltonian flows can be approximated by split Hamiltonian
flows. Fortunately, prior work Turaev [2003] has shown that, in fact, any sym-
plectomorphism of R2n can be approximated by the time-1 flow of some split
Hamiltonian.

2.2 Learning with gradient descent

Armed with theoretical results that our models can approximate all symplecto-
morphisms, we can turn our attention to optimization. Our main optimization
technique is stochastic gradient descent, chosen for its ability to quickly and
efficiently optimize deep neural networks. More precisely, we have some source
domain, say the 4-dimensional ellipsoid E(1, 5), and we would like to symplec-
tically embed this domain into the smallest possible ball B4(c).

We represent our map Fθ : R4 → R4 as a sequence of layers, each layer
performing one step of leapfrog integration on a neural network Hamiltonian:

Fθ(x, y) = L(Hθk) ◦ · · · ◦ L(Hθ1)(x, y) (2)

where each Hθi : R4 → R is a neural network Hamiltonian with parameters
θi, and L applies one step of leapfrog integration under the Hamiltonian in its
argument.

Learning is an iterative process. At each step, points (xi, yi) are sampled
from the boundary of the source domain, here E(1, 5), and mapped to (x̃i, ỹi) =

5

Fθ(xi, yi). We then compute our loss function, which in this case we take to be
the area of the smallest ball containing each of the (x̃i, ỹi):

Q(θ) = 2πmax
i
‖(x̃i, ỹi)‖2 (3)

Because each layer of Fθ is differentiable with respect to θ, we can compute the
gradient ∇Q, and apply a step of gradient descent towards minimizing Q. Over
many iterations, the parameters θ will improve, resulting in embeddings into
smaller and smaller balls. See sections ?? and ?? for details on how we sample
from different domains, and for examples of different loss functions.

2.3 Pathological embeddings and resampling

One remaining fear is that because our algorithm works with only finitely many
points, it may be that these points do indeed map to a certain target domain,
but that other points that were not sampled map outside the target domain.
This problem is exacerbated if there are very few sample points, and if the
sample points remain fixed for all iterations of training. Indeed, in this case the
embeddings learn at first, but after several iterations, they start overfitting to
the specific sample points chosen at the beginning of learning. See appendix
section A.4 for more details on these experiments. To compensate, we resample
training points at every iteration of learning. Indeed, with resampling, even
as few as 100 sample points suffice with minimal sampling error, giving similar
enclosing areas to verifications with upwards of 104 − 106 sample points.

2.4 Φ0 and folding

While theoretically true that any symplectomorphism can be approximated by
a sequence of Leapfrog-integrated Hamiltonians, many existing constructions of
symplectic embeddngs use a completely different technique. Symplectic folding
is a family of symplectic embeddings that works particularly well for toric do-
mains like ellipsoids and polydisks. Folding consists of a sequence of symplectic
transformations, each given either as an explicit map or as a flow generated by
some Hamiltonian. The complete folding construction is fairly complex, so we
will not describe all of the steps (see Schlenk [1999] for details).

One of the key aspects of folding is that it takes place in a transformed
coordinate space. That is, the first step of folding is a symplectic coordinate
transformation, which we call Φ0, and the last step of folding undoes this coor-
dinate transformation via Φ−10 (see section A.5 for details on the construction
of Φ0). Because of the initially poor performance of the leapfrog approach on
the polydisk problem, we decided to try learning directly in this transformed
space, as nontrivial embeddings might be simpler to describe there.

There are two ways we tried to learn in this transformed space. One was
to theoretically apply Φ0 to our source domain, say the polydisk P (1, 5), and
compute its image under the map, in this case the domain Ẽ(1, 5). Then dur-
ing training, instead of sampling points (xi, yi) from the boundary of E(1, 5),

6

we sample from the boundary of Ẽ(1, 5). Correspondingly, as a loss function,
instead of computing the area of the smallest ball containing the (x̃i, ỹi), we
compute the area of the smallest transformed ball B̃4(c) containing them, where
B̃4(c) is the image of the ball under Φ0. Unfortunately, this method did not
manage to give results better than the identity, so we did not pursue it further.
However, it might be possible to do better with more hyperparameter tuning.

The second way was inspired by standard, unconstrained neural networks,
which are alternating compositions of linear and elementwise nonlinear maps.
Making an analogy with neural networks, we represent symplectic maps as al-
ternating compositions of symplectic linear and symplectic nonlinear maps. As
symplectic nonlinear maps, we alternate between Φ0 and Φ−10 . Thus, our map
is given by

Fθ(x, y) = Φ−10 ◦Aθk ◦ Φ0 ◦ · · · ◦Aθ2 ◦ Φ−10 ◦Aθ1 ◦ Φ0(x, y) (4)

where each Aθi is a linear symplectic map with parameters θi. We also exper-
imented with other nonlinearities, described in section A.2. We derived and
implemented a differentiable approximation of Φ0, and parameterized linear
symplectic maps with G-reflectors (see sections A.5 and ?? for details). Unfor-
tunately, due to numerical instability of the Φ0 map, this method often failed to
converge, and we were unable to learn embeddings on any complex problems.
We hope that future work may further explore this direction of research.

3 Experiments

3.1 2 dimensional experiments

In two dimensions, any two domains with the same volume are symplectomor-
phic. This makes two dimensional embedding problems a good testing ground
for learning symplectomorphisms. We experimented with a pair of two dimen-
sional embedding problems: that of embedding a ball into the smallest possible
square, and that of embedding four side-by-side balls into the smallest single
ball.

3.1.1 Ball into square

A simple example to understand our algorithms is embedding a ball into a
square. As polynomials are sufficiently efficient to compute in the 2-dimensional
case, we applied our algorithm to this problem using both polynomial and neural
network Hamiltonians. Figure 1 shows the flow that our algorithm gives when
using degree 10 polynomial Hamiltonians with 10 macro-steps and 10 micro-
steps. It embeds the circle of area π into the square of area 3.1451, an error of
about 0.004. Figure 2 shows the flow that the same algorithm gives when using
neural networks. It embeds the circle of area π into the square of area 3.1677.

7

(a) Time 0 (Circle) (b) Time 4 (c) Time 8 (d) Time 12

(e) Time 18 (f) Time 22 (g) Time 26 (h) Time 30

Figure 1: Eight frames from the flow of a circle into a square under our learned
polynomial map.

(a) Time 0 (Circle) (b) Time 1 (c) Time 2 (d) Time 3

(e) Time 4 (f) Time 5 (g) Time 6

Figure 2: Seven frames from the flow of a circle into a square under our learned
polynomial map.

8

Figure 3: four balls into one

3.1.2 Four balls into one

We take four balls each of area 1 and try embedding them into one ball of the
smallest area(radius) possible. We were not able to get arbitrarily close to the
known optimal embedding: since these are 2 dimensional balls, we should be
able to pack four balls of area 1 into a large ball of area 4. In the experiment, we
use split neural network of width 200 with 2 hidden layer, 10 macro-steps and 2
micro-steps. Based on the initial centers of the four balls, after 15000 iterations,
the algorithm can embed 4 balls into a larger ball of area 4.7889 (initial centers
of balls on x axis, closest distance between 2 nearby balls is 0.1), and 5.24 (initial
centers of balls are around a circle on the x− y plane, closest distance between
2 nearby ball is 0.1). Figure 3 shows the flow of the Hamiltonian for four balls
initially centered on the x axis (applied to both the four balls as well as random
sample points in [−1, 5]× [−3, 3]).

We posit some reasons for this failure. One issue rests on the fact that this
problem is somewhat sensitive to the initial configuration of balls; that is, their
relative positions leave more or fewer gaps of varying size with some easier to fill
with symplectic transformations than others. Another issue is that we are using
the same Hamiltonian for all four balls. However, it might be the case that four
ball packing requires different Hamiltonians for different balls, and it might be
hard to use the flow generated by just one Hamiltonian to approximate the flow
generated by four different Hamiltonians.

3.2 Fibonacci Staircase

As a more complex test of our algorithm, we apply our method to the well-
studied problem of embedding a 4-dimensional ellipsoid into the smallest possi-
ble ball. Because of scaling symmetry, this reduces to the problem of embedding
an ellipsoid E(1, a) into a ball B4(c). Thus the optimal c can be seen as a func-
tion of a single variable, a. In McDuff and Schlenk [2009], Mcduff and Schlenk

9

compute this function exactly, building on prior work characterizing ellipsoid
embeddings in 4 dimensions. This function shows a surprising amount of struc-
ture.

For a between 1 and τ4, the function is piecewise linear with infinitely many
endpoints at ratios of certain Fibonacci numbers, where τ is the golden ratio.
For this reason, the function is often called the Fibonacci staircase. Between
τ4 and 7, c(a) = a+1

3 . Between 7 and 8 + 1
36 , c(a) =

√
a except on 8 disjoint

intervals, in which the function is piecewise linear. Past 8+ 1
36 , volume is the only

constraint, giving c =
√
a. Between τ4 and 8+ 1

36 , volume is the only constraint,
giving c =

√
a, except for seven intervals where the function is piecewise linear.

Past 8 + 1
36 , volume is the only constraint everywhere, so c =

√
a.

We ran our algorithm on E(1, a) with 30 evenly spaced values of a between 1
and 10. After training, we sampled 106 points from each ellipsoid and computed
the area of the smallest ball containing the image of these points under the
algorithms’s learned embedding. On some parts of the staircase, our algorithm
is very close to optimal. Between a = 4 and a = 5.25, there is an error of only
about 0.1. However, between 5.25 and 6.25, the error continues to worsen even
though the optimal embedding remains the same. We posit that the E(1, 6.25)
embedding is much harder than the E(1, 5.25) embedding; the 6.25 ellipsoid
has much larger volume, but theoretically it can be embedded into the same
ball as the 5.25 ellipsoid. It should also be noted that all hyperparameters were
tuned on the E(1, 5) embedding problem, so better results might be possible
given additional hyperparameter searching. Interestingly, our algorithm failed
to produce embeddings better than the identity map between a = 2 and a = 3.1,
even though better embeddings are theoretically possible. We hypothesize that
these problems are hard because these ellipsoids cannot be compressed very
much, only about 30% by area.

3.3 6D Ellipsoids E(1, a, b) ↪→ B4(c)

3.3.1 Volume and EH constraints

While the answer to the question of when E(1, a) ↪→ B4(c) is entirely known,
the same cannot be said of the 6-dimensional case E(1, a, b) ↪→ B6(c). In fact,
there are there are very few known obstructions to such embeddings, and even
fewer known constructions.

3.3.2 Buse-Hind embeddings

One construction for E(1, a, b) ↪→ B6(c) was discovered by Buse and Hind in a
2018 paper. By proposition 3.4 of that paper:

Proposition 1. If E(a, b) ↪→ E(c, d), then E(a, b, e1, . . . , en) ↪→ E(c, d, e1, . . . , en).

In the 6-dimensional case, this means that if there exists a 4-dimensional
embedding E(1, a) ↪→ E(1, c), then there likewise exists a 6-dimensional em-
bedding E(1, a, b) ↪→ E(1, c, b). To simplify this problem even further we de-
cided to look more specifically at embeddings of E(1, a, b) ↪→ B4(c). By this

10

Figure 4: The moment map of the flow of E(1, 27, 64) ↪→ B6(27.69) under our
learned neural network Hamiltonians.

construction, whenever there is an embedding E(1, a) ↪→ B4(c) there exists an
embedding E(1, a, b) ↪→ B6(max(c, b)) as E(1, c, b) ⊆ B6(max(c, b)). As the op-
timal embeddings for 4-dimensional ellipsoid into ball are fully known McDuff
and Schlenk [2009], this construction can give a good upper bound on the min-
imal c for this question. However, this embedding is not known to be optimal,
and so our goal for this problem was to find an embedding in any case that
embeds into a smaller ball than this construction.

3.3.3 Challenges

The first issue encountered while attempting to apply this algorithm to the
E(1, a, b) ↪→ B6(c) problem was that of sampling error. Due to the curse of
dimensionality, sampling points from a 6-dimensional ellipsoid gives significantly
sparser results than sampling from a 4-dimensional ellipsoid. To alleviate this
issue, we sampled from 20, 000 points for these experiments. However, this
caused each experiment to take over 5 hours to run, and so we only were able to
run our algorithm on a few sample ellipsoids. Nevertheless, these few samples
were able to provide some promising results, and with more runs we hope that
even more interesting embeddings could be found.

3.3.4 Our embeddings

Our techniques managed to embed the E(1, 27, 64) ellipsoid into B4(27.69) (see
fig. 4). For comparison, the Buse-Hind embedding in this case gives an em-
bedding E(1, 27, 64) ↪→ B6(27), while the volume constraint gives c ≥ 12 for
E(1, 27, 64) ↪→ B6(c). Notably, our algorithm achieved an embedding within
3% of the best known embedding for this problem of E(1, 27, 64) ↪→ B6(c). It is

11

possible that in fact the Buse-Hind embedding is optimal, but it is certainly not
guaranteed. However, this finding suggests that if there is a better embedding,
it is in some real sense difficult to find. This also provides evidence that there
may not be any such embedding at all. Meanwhile, in the case of the E(1, 5, 50)
ellipsoid, our techniques only managed to embed this into B6(14.1). In com-
parison, the Buse-Hind construction gives an embedding E(1, 5, 50) ↪→ B6(7.1).
Perhaps this is simply because our algorithm was not given enough time to
learn, or perhaps skinnier ellipsoids simply take more time to learn.

3.4 4D Ball Packing

3.4.1 Background

Ball packing is another interesting problem that we try our algorithm. Recall
that the Euclidean ball packing problem is to find compositions of translations
(and rotations) of balls in order to fill as much as possible the volume of another
shape. In a similar way, symplectic ball packing problem is to find symplectic
embeddings from the disjoint union of k B2n into another shape such as B2n and
C2n. To test our algorithm, we mainly study the problem tki=1B

4(1) ↪→ B4(c)
by minimizing the area c = maxx,y π(x21 +y21 +x22 +y22) of the ball we can embed
k disjoint B4(1) into.

Like the ellipsoid case, in addition to the volume constraint that c ≥
√
k,

there’re other obstructions in the ball packing problem. One example is the
following theorem from Gromov [1985]

Theorem 2 (Two Ball Theorem). If B2n(a)tB2n(a) ↪→ B2n(A), then 2a < A.

In fact, we can define the k’s symplectic ball packing number (see Schlenk
[2004] for details) pk as

pk = sup
a

k V ol(B2n(a))

B2n(1)

which means the maximum percent of volume of B2n(1) we can fill by symplec-
tically embedding the disjoint union of k B2n of equal area. It has been proven
that in dimension 4, for k ≥ 9, volume is the only constraint (pk = 1), but
for 1 < k < 9, we can only fully fill B4(1) by 4 B4(1

2). For other values of k,
pk < 1. See Table 1 for the exact values of these packing number. As a result,

the optimal loss for our test should be c =
√

k
pk

.

Ball packing problem is also closely related to the ”elliposid into ball” prob-
lem by the following theorem (see McDuff [2008] for details),

Theorem 3. E(1, k) symplectically embeds in the open ball B̊4(µ) if and only
if k disjoint balls B4(1) embed in B̊4(µ).

This means that the optimal embedding of E(1, k), k ∈ N into ball should

give us B4(
√

k
pk

). Indeed, this agrees with the Fibonacci Staircase.

12

Figure 5: ball packing in 4 dimension, k=4

3.4.2 Experiment

Explicit realizations of the packing number use the moment map (see Schlenk
[2004] and Traynor [1995] for details). Recall that the image of a B4 under
the moment map is 4 × �, so instead of packing the ball directly, they work
in the moment space and find the affine linear symplectomorphisms (different)
for each ball (assuming that all balls are initially centered at the origin so that
their images are isosceles right triangles) that transforms the image of the ball
in the moment space to a desired shape and location.

This is different from what we do in this experiment: we sample directly
from the boundaries of the k non-overlapping B4(1) centered at different points
initially, and try to find the Hamiltonian/flow that embeds the disjoint balls so
that they are contained in a larger ball of area as small as possible. The optimal
packing constructions don’t specify the initial centers of the balls, and since it
involves translation and linear symplectomorphism in the moment space, the
actual embedding might be hard to realize using neural network or polynomial.

In the experiment, we tried 4 dimensional k ball packing for 2 ≤ k ≤ 12. The
Hamiltonian we choose is the split Neural Network, with width 200, 2 hidden
layers, macrostep 10, and microstep 2, with 15000 iteration. The initial center
of the balls are either on a line (x1 axis), or on a circle on the x1− x2 plane. In
both cases, the minimum distance between 2 nearby balls is set to be 0.1. See
Table 1 for the experiment result and comparison with the fibonacci staircase
experiment (to approximate E(1, n) where n is integer, we choose E(1, x) where
x is the closest sample point to n in the staircase sample points), and Figure 5
for the flow for 4 balls packing in moment space.

It seems that the algorithm cannot give us embeddings that are close to
optimal ones, and the error gets larger with more balls. In addition, the loss
depends on the initial configurations of the balls. In dimension 4, placing the
centers of the ball on a circle on x1−x2 plane preforms better than putting the

13

k pk optimal loss line circle (x,E(1, x))

2 1
2 2 2.1343 2.1123 (2.02,2.0239)

3 3
4 2 3.4396 2.1825 (2.98,2.3358)

4 1 2 3.4584 2.3939 (4.0,2.3541)

5 20
25 2.5 3.8291 2.9495 (5.02,2.6835)

6 24
25 2.5 4.2895 3.4681 (5.98,3.0556)

7 63
64 2.6667 4.8727 4.1065 (7.0,3.3839)

8 288
289 2.8333 5.5498 4.7752 (8.02,3.6862)

9 1 3 6.0769 5.3350 (8.98,4.0177)

10 1 3.1623 7.4563 5.9137 (10.0,4.7760)

11 1 3.3166 8.2527 6.5748 /

12 1 3.4641 7.6419 7.1742 /

Table 1: 4 dimension ball packing

centers on a line (x1 axis). This suggests that we can also learn the center of
the balls. So, instead of setting the centers of balls to fixed values, we set the
initial centers to be learnable variables. To avoid overlap after gradient descent
(Adam), we either scale the gradient by multiplying it by a scalar between 0.01
and 1, or (if rescaling still gives overlap because the previous first momentum is
large), we set the gradient to g̃ = − β1

1−β1
mt−1 where mt−1 is the first momentum

at t − 1 and β1 is the exponential decay rate for the first momentum. By this
update rule, mt = β1 ∗mt−1 + (1 − β1) ∗ g̃ = 0, so the center will not change,
and there will be no overlap. The initialization of the centers of the balls are
on the circle on the x1 − x2 plane (s.t. the smallest distance between 2 nearby
balls is 1), then we add random uniform noise in [0.0,MAX NOISE), and if
there is overlap, we move all initial centers away from the origin by multiplying
the centers by a constant greater than 1 (s.t. the smallest distance between 2
nearby balls is 1).

We try learning centers in the t4i=1B
4(1) ↪→ B4(c) problem. However, exper-

iments with different settings of hyperparameters show that learning the centers
cannot give us better result than fixing them initially around a circle. In addi-
tion, the loss depends on the hyperparameters heavily, suggesting that tuning
parameters might give us better result. See Table 2 for the hyperparameters
and results.

14

learn center MAX NOISE macro step hidden layer (decay rate, decay period) loss

No / 10 2 (0.98,100) 2.3939

Yes 1 10 2 (0.97,150) 3.5172

Yes 0.25 10 2 (0.97,150) 3.7962

Yes 1 10 2 (0.98,200) 3.2074

Yes 0.25 10 2 (0.98,200) 2.9209

Yes 0.25 5 5 (0.98,200) 2.4784

Table 2: learning centers, k=4

3.5 Simplices

Due to recent work from Haim-Kislev we can now compute the Ekeland-Hofer-
Zehnder(EHZ) capacity of convex polytope.

Theorem 4. (Haim-Kislev) Given a convex polytope K ∈ R2n with non-empty
interior, let Fk denote the number of (2n − 1) dimensional facets of K and
{Fi}FK

i=1 be the set of these facets. Let ni be the unit outer normal vector of Fi
and define the height hi of FK as supx∈K < x, ni >. The EHZ capacity of K
is,

cEHZ(K) =
1

2

[
max

σ∈SFK
,(βi)∈M(K)

∑
1≤j<i≤FK

βσ(i)βσ(j)nσ(i)Jnσ(j)

]−1
where

M(K) =

{
(βi)

FK
i=1 : βi > 0,

FK∑
i=1

βihi = 1,

FK∑
i=1

βini = 0

}
Rather than considering all polytopes we restrict our attention to simplices.

Given the matrix V ∈ GL2n(R) with vi denoting the i’th row we define the
simplex

S(V) =

{
2n∑
i=1

αivi | αi ∈ R,
2n∑
i=1

αi = 1

}
Every simplex is isometric to a simplex of this form for some set of vectors.

For the simplex the formula for the EHZ capacity can be simplified. The i’th of
this simplex is given by the i’th row of V . For the sake of notation we will say
the origin is the 2n + 1’th vertex, v2n+1, of S(V). The facet of S(V) opposite
to vi with be denoted Fi and referred to as the i’th facet.

15

Theorem 5. Given the non-degenerate simplex S(V), let U be V −1, then

cEHZ(S(V)) =
1

2

[
max
σ∈S2n

∑
1≤j<i≤2n

signσ(i, j)Uij

]−1

cEHZ(S(V)) =
1

2

[
max
σ∈S2n

∑
1≤j<i≤2n

signσ(i, j)βiβjniJnj +
∑

1≤i≤2n

βiniJm

]−1
where

signσ(i, j) =

1 σ(i) > σ(j)

0 i = j

−1 σ(i) < σ(j)

β = −N−Tm

m = V −112n×1

Proof. The permutation in Haim-Kislev’s formula for EHZ capacity corresponds
to order in which facets are traversed by the closed loop z(t), the Legendre dual
to the reeb orbit. From proposition 3.3 we see that the summation is equivalent
to an integral along z, which implies that for a given β ∈ M(K) the sum is
invariant up to cycling σ.

For the simplex there are 2n + 1 facets so we pick σ with a fixed point at
2n+ 1. For a given (βi)

2n+1
i=1 we have,

max
σ∈S2n+1

∑
1≤j<i≤2n+1

βσ(i)βσ(j)nσ(i)Jnσ(j) =

max
σ∈S2n

∑
1≤j<i≤2n

βσ(i)βσ(j)nσ(i)Jnσ(j) +
∑

1≤i≤2n

βσ(i)β2n+1nσ(i)Jn2n+1

(5)

We can rewrite the first summand as follows

max
σ∈S2n

1

2

∑
1≤j≤2n,1≤i≤2n

signId(i, j)βσ(i)βσ(j)nσ(i)Jnσ(j) =

max
σ∈S2n

1

2

∑
1≤j≤2n,1≤i≤2n

signId(σ
−1(i), σ−1(j))βiβjniJnj =

max
σ∈S2n

1

2

∑
1≤j≤2n,1≤i≤2n

signσ−1(i, j)βiβjniJnj =

max
σ∈S2n

∑
1≤j<i≤2n

signσ(i, j)βiβjniJnj

(6)

16

Now we show that for a simplex M(K) is a singleton set. Note that all
the heights to the facets containing the origin are 0 as the dot product of any
point in the simplex with the outer normal can not be positive. Let h denote
the height to the last face. Thus we have that β2n+1 = 1

h from the second
constraint. The third constraint can be rewritten as

NTβ = −n2n+1

h

where β is the column vector containing the first 2n values of beta in order.
An outer normal vector to the i’th facet, where i 6= 2n+ 1, is a vector that

satisfies the equations ni · vj = −λδij where λ is some positive scalar for all
1 ≤ j ≤ 2n. This mean that

NV T = −Λ

where Λ is a positive-definite diagonal matrix. Solving for N yields

N = −ΛV −T

which implies that that N is non-singular. Therefore there can at most one
solution the the constraints. However M(K) is non-empty since every compact
convex subdomain of R2n has an EHZ capacity. n2n+1 is the vector such that

vi · n2n+1 = h

for all non-zero vertices.
n2n+1

h
= V −112n×1

Denoting this value by m completes the proof.

Corollary 5.1. cEHZ(S(I2n)) = 1
2n

Proof.
N = −ΛV −T = −I2n

m = β = 12n×1

niJnj is 1 if i = j + n and 0 otherwise. So the maxima is attained when σ
is the identity. The second summand is 0 since niJm is 1 for 1 ≤ i ≤ n and
−1 for n < i ≤ 2n. Thus the maximal value for the sum is n and so the EHZ
capacity is 1

2n .

3.6 Viterbo’s Conjecture

We will now consider the following conjecture of Viterbo [2000]

Conjecture 6. (Viterbo, 2000) For a convex body K ∈ R2n the following in-
equality holds

n!cEHZ(K)n

V ol(K)
≤ 1

17

We will refer to the right-hand-side as the systolic ratio. The rest of the
section will be focused on maximizing this ratio. To do so is equivalent to
solving the following mini-max equation

Mn = min
V ∈SL2n(R)

max
σ∈S2n

∑
1≤j<i≤2n

signσ(i, j)βiβjniJnj +
∑

1≤i≤2n

βiniJm

where βi, ni are those given in the equations of theorem 4 for the S(V).
Note that the value being minimized is (2cEHZ(S(V)))−1, which we will notate

as MV . Viterbo’s conjecture implies that Mn ≥ 1
2

n
√

(2n)!
n! . Using Sterling’s

approximation we have that Mn ≥ 2n
e . By Corollary 4.1 we have the upper

bound Mn ≤ MI = n. The rest of this section will be on attempting to find
bounds on Mn.

3.6.1 Simplex EHZ Capacity Algorithm

We can obtain upper bounds on Mn computationally by searching for matrices
V that give large values. A natural method for computing the EHZ capacity of
a given simplex is to iterate over all permutations of σ, compute the summation
and take the largest value. However this approach is O((2n)!) in all cases. So
instead we propose an alternative algorithm in which maximal permutation is
built up successfully through the addition of relations. A constraint set, C, is
a collection of tuples (i, j) such that i and j are integers ranging from 1 to n.
We say that σ ∈ S2n satisfies C if for all (i, j) ∈ C we have that σ(j) > σ(i). C
can be thought of as the basis of a partially ordering on {1, ...2n}, and can be
implemented with a directed graph. The psuedocode for this algorithm is shown
bellow. signC,M (i, j) equals signMij

if there exists a σ following the constraints
C such that signσ = signMij , otherwise it is −signMij . This ensures that the
heuristic being used is admissible.

18

Algorithm 1: Simplex EHZ capacity

Mij := βiβjniJnj for all i,j such that 1 ≤ i < j ≤ 2n;
constraints := Empty Constraints;
H(C) :=

∑
1≤i<j≤2n signC,M (i, j)Mij ;

pq = contraints;
max = −∞;
while pq is non-empty do

c → pop argminc∈pqH(c) from pq;
if H(C) < max then

break;
end
s = σ that satisfies c;
max = maximum(max,

∑
1≤i<j≤2n signs(i, j)Mij);

k, l = values such that σ(k), σ(l) are not related by c;
if there exits such a k, l then

leftConstraint := c + relation(σ(k) < σ(l));
rightConstraint := c + relation(σ(k) > σ(l));
add leftConstraint, rightConstraint to pq;

end

end

cEHZ(S(V)) = 1
2 [Mij +

∑
1≤i≤2n βiniJm]−1;

Using this algorithm to compute EHZ capacity we can search for simplicies
that maximize the systolic ratio by applying gradient descent on V .

Viterbo’s conjecture trivially provides the sharpest bounds when n = 1. For
n = 2 no simplices were found whose systolic ratio was greater than that of
the orthosimplex. However the data suggests that there are simplicies not lin-
early symplectomorphic to the orthosimplex with systolic ratios equal to the
orthosimplex. We can check if two simplices, S(V) and S(U), are linearly sym-
plectomorphic by checking if the linear transformation V −1U is a symplecto-
morphism. For n from 3 to 5 simplices were found with systolic ratios greater
than that of the orthosimplex. The results of this experimentation are collected
in the following table.

19

4 Discussion and Future Work

A Appendix

A.1 Hyperparameters

Hyperparameter Setting

Initial Learning Rate 0.01

Learning Rate Decay Period 5000

Learning Rate Decay Factor 0.5

Table 3: Leapfrog E(1, 5) Hyperparameters

A.2 Alternative nonlinearities

Another parameterization of symplectic maps that we tried was inspired by
standard neural networks. One such construction was described in section 2.4,
but we will here describe a more general construction.

A.3 Euler’s methods pathologies

To get the exact flow of a Hamiltonian, we need to solve Equation 1. However,
the hamiltonians (high degree polynomial and neural network) are too compli-
cated to be solved exactly, suggesting that we should use numerical integration
to approximate the actual flow. Euler’s method is a widely used integrator to
solve PDE, but it is not symplectic after each step of integration. To see this, let
H(x, y) : R2n → R be the Hamiltonian, Euler’s method updates the positions
in the following way,

x̂
ŷ

 =

x
y

+ δJ∇H

so, the Jacobian of this transformation is

∂(x̂, ŷ)

∂(x, y)
= I + δJD2H(x, y)

where D2H(x, y) is the Hessian of H(x, y). However, there is no guarantee that
∂(x̂,ŷ)
∂(x,y) is symplectic (i.e. satisfies (∂(x̂,ŷ)∂(x,y))J(∂(x̂,ŷ)∂(x,y))

T = J).

20

Figure 6: determinant of Jacobian for the pendulum

Take the 2 dimensional pendulum as an example. The Hamiltonian for the
pendulum is H(x, y) = 1

2y
2 − cosx, where x, y ∈ R. In 2d, being symplectic is

equivalent to area preserving, which means that the determinant of the Jacobian
of the transformation should be 1. However, Figure 6 shows that the Jacobian
is not constant. (In this example, we calculate the determinant of the Jacobian
from time 0 to time 5, with δ = 0.1.)

Indeed, if we use Euler’s method to integrate the Hamiltonian, we can get
”embeddings” that break volume constraints. For example, in the E(1, 5) ↪→ B
problem, after 1000 iterations, Euter’s method gives a embedding intoB(0.0241),
which is way below the volume constraint B(

√
5). Figure 7 shows the loss during

the training.

A.4 Resampling pathologies

When using only one set of sample points, our algorithm manages to learn an
embedding significantly better than optimal. This is because the loss function
only takes into account the points that have been sampled, and so as our sym-
plectomorphism has overfitted to these points it is possible to take them within
a smaller ball than the ellipsoid they border can possibly squeeze into. When
validating these flows by resampling with more new points, the recalculated loss
is significantly higher. However, when resampling every step, even with the
same number of points, the validated loss and the sampled loss both converge.
Figure 8 shows the algorithm running on E(1, 4) ↪→ B4(c) with and without
resampling using 200 sample points for learning and 2000 sample points for
validation.

21

Figure 7: E(1, 5) and Euler’s method

(a) No resampling (b) Resampling every step

Figure 8: E(1, 4) ↪→ B4(c)

22

A.5 Φ0 and folding

In the chapter 3 of Schlenk [1999], Schlenk describes a technique to construct em-
beddings known as folding. Folding embedding have been proven to be sharp for
certain polydiscs and ellipsoids being embedded into balls (see Schlenk [1999])
for details.

Due to the poor performance of our computational approach on polydiscs
we adapted parts of the folding construction in our algorithm. The goal was
to transform the domain into a different coordinate space which may be more
conducive to learning.

Let ε be a positive real number. Denote by D(a) ∈ R2 the disc of area a and
R(a) ∈ R2 the rectangle [− 1

2 ,
1
2]× [0, a]. The folding construction begins with a

symplectomorphism α : D(a) ↪→ R(a) such that

α(z)x ≤ π(‖z‖2) + 2ε,∀z ∈ D(a) (7)

where α(z)x is the x coordinate of the image under α.
The existence of such symplectomorphism is easy to prove (using the flexi-

bility of dimension 2); however, to get the explicit symplectomorphism is hard.
The general idea is to map loops of circle in D(a) to loops of rounded rect-
angle (or circle) in R(a) by fixing the angles φ in the polar coordinate, and
expanding or contracting the distances r to turn the circle into the rounded
rectangle/circle (this gives us an area preserving diffeomorphism β). Then, we
can solve an initial value problem, which gives us the corresponding angle change
h(r, φ) such that β composite with this angle change (reiφ → β(reih(r,φ)) is the
symplectomorphism we need.

Below is an approximate construction of this map α.
First, we construct the area preserving diffeomorphism β̂ : R2 → R2 by

specifying the loops of rounded rectangles (or circle) that each circle of radius
r is mapped to:
a) for πr2 ≤ ε′, β̂ is the identity map, and circles are mapped to circles;
b) for ε′ < πr2 ≤ ε(1− ε/a), circle of radius r is mapped to a rounded rectangle

[− ε
2s,

ε
2s]× [− 1−ε/a

2 s, 1−ε/a2 s], where δ < s ≤ 1 is a parameter to make sure that
the map is area preserving, and δ is a small quantity that depends on ε′;
c) for ε(1− ε/a) < πr2 ≤ a, circle of radius r is mapped to a rounded rectangle

[− ε
2 (1 + s), ε2 + (a − 3ε

2)s] × [− 1−ε/a
2 − ε

2as,
1−ε/a

2 + ε
2as], where 0 < s ≤ 1 is a

parameter to make sure that the map is area preserving;
d) for a < πr2 ≤ 4k2a2, circle of radius r is mapped to a rounded rectangle
[−ε− (ka− ε)s, a− ε+ (ka− a+ ε)s]× [− 1

2 − (ka− 1
2)s, 12 + (ka− 1

2)s], where
0 < s ≤ 1 is a parameter to make sure that the map is area preserving;
e) for πr2 > 4k2a2, circle of radius r is mapped to a rounded square of area πr2

centered at the origin.

After applying translation (−ε, 12) to the above area preserving diffeomor-

phism β̂, we get the diffeomorphism β that can map D(a) to R(a). Notice that
β is already symplectic for πr2 ≤ ε′, we only need to find the angle change

23

Figure 9: Φ0

h(r, φ) for maps from circles to rounded rectangles. Since we can make the
rounded corner arbitrarily small, we can assume that the rounded rectangles
are rectangles. Without loss of generality, we find such h(r, φ) for the map from
circle of radius R to rectangle of shape [−wl,wr] × [−h, h], where wl and wr
represents the left width and right width respectively and depends on r.

After solving Equation 3.1.3 from Schlenk [1999], we get:

a) h(r, φ) = arctan r
wr′wrφ for 0 ≤ φ < wr′h

r

b) h(r, φ) = π
2 − arctan −rφ+c1h′h for wr′h

r ≤ φ < π − wl′h
r

c) h(r, φ) = π + arctan r(φ−π)
wl′wl for π − wl′h

r ≤ φ < π + wl′h
r

d) h(r, φ) = 3
2π − arctan− rφ+c3h′h φ for π + wl′h

r ≤ φ < 2π − wr′h
r

e) h(r, φ) = 2π + arctan r(φ−2π)
wr′wr for 2π − wr′h

r ≤ φ < 2π

where wr′ = ∂wr
∂r , wl′ = ∂wl

∂r , and h′ = ∂h
∂r , c1 = wr ∗ h′ + wr′ ∗ h, and

c3 = 2πr − c1.
The above construction of β and h gives us the desired map satisfying Equa-

tion 7. See Figure 9 and Figure 10 for the map and its inverse(a = 5, k = 3,
ε = 0.1).

References

Mikhail Leonidovich Gromov. Pseudo-holomorphic curves in symplectic mani-
folds, 1985.

Dusa McDuff. Symplectic embeddings of 4-dimensional ellipsoids, 2008.

Dusa McDuff and Felix Schlenk. The embedding capacity of 4-dimensional
symplectic ellipsoids, 2009.

Felix Schlenk. On symplectic folding, 1999.

Felix Schlenk. Packing symplectic manifolds by hand, 2004.

Lisa Traynor. Symplectic packing constructions, 1995.

24

Figure 10: Φ−10 ◦ Φ

D. V. Turaev. Polynomial approximations of symplectic dynamics and richness
of chaos in nonhyperbolic area-preserving maps, 2003.

Claude Viterbo. Metric and isoperimetric problems in symplectic geometry.
2000.

25

