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LECTURE 1

Introduction

Let Mn be a closed smooth manifold of dimension n. There are many equivalent models
for its (co)homology:

• singular homology Hsing
∗ (M ; Z)

• simplicial homology Hsimp
∗ (M ; Z)

• de Rham cohomology H∗dR(M ; R)
• Morse homology HMorse

∗ (M ; Z),
etc. A basic fact from algebraic topology is that singular and simplicial homology are
isomorphic, although the latter requires a choice of triangulation. Similarly, a basic fact from
smooth manifold theory is that de Rham cohomology (i.e. closed differential forms modulo
exact ones) is isomorphic to singular or simplicial cohomology over the real numbers.

The last model, Morse homology, is the one most relevant for this course. We begin by
recalling the basics of Morse theory.

1.1. First look at Morse theory

Definition 1.1. A smooth function f : M → R is Morse if all of its critical points are
nondegenerate. Here p ∈M is a critical point if df |p = 0 (i.e. ∂x1

f(p) = · · · = ∂xnf(p) = 0
in local coordinates x1, . . . , xn near p) and such a critical point is nonsingular if the Hessian
d2f |p is nonsingular (i.e. the determinant of the symmetric n × n matrix (∂xi∂xjf(p)) is
nonzero).

Lemma 1.2 (Morse lemma). If f : M → R is a Morse function and p ∈ M is critical
point, we can find local coordiantes x1, . . . , xn near p such that

f(x1, . . . , xn) = f(p)− x2
1 − · · · − x2

s + x2
s+1 + · · ·+ x2

n.

Here s is called the (Morse) index of f at p, denoted by indf (p).

Remark 1.3. If p ∈M is a regular point (i.e. not a critical point), then we can find
local coordinates near p such that f(x1, . . . , xn) = x1. This is a consequence of the inverse
function theorem.

Example 1.4. We have indf (p) = 0 if and only if p is a local minimum, indf (p) = n if
and only if p is a local maximum, and otherwise p is a saddle point.

The basic philosophy of Morse theory is to study the relationship between the topology
of M and properties of a Morse function f : M → R. Consider the sublevel sets

S≤a := f−1((−∞, a]).

We have:
• S≤a = ∅ for a < min f
• S≤a = M for a > max f

5



6 1. INTRODUCTION

Figure 1.1. Attaching a 2-dimensional 1-handle.

Figure 1.2. The height function T2 → R.

• S≤a ⊂ S≤a′ for a ≤ a′.

Notation 1.5. Let criti(f) denote the set of index i critical points of f , and put
crit(f) := ∪ni=0criti(f). Note that f(crit(f)) ⊂ R is the set of critical values of f .

The following could be called the “fundamental theorem of Morse theory”:

Theorem 1.6. For a ≤ a′, S≤a′ deformation retracts onto S≤a if [a, a′]∩f(crit(f)) = ∅.
On the other hand, if (for simplicity) there is a single critical point p in f−1([a, a′)) with
a < f(p) < a′, then S≤a is homotopy equivalent to Sa ∪H, where H is an n-dimensional
handle of index indf (p).

Recall that a n-dimensional handle of index k is of the form Dk × Dn−k, glued to a
manifold with boundary along ∂Dk × Dn−k. This can be viewed as a “thickened” version of
attaching a k-cell to a CW complex. See Figure 1.1 for a cartoon.

Example 1.7. Figure 1.2 depicts a Morse function T2 → R given by the height. Figure 1.3
shows how the sublevel sets vary with a and the corresponding handle attachments as promised
by Theorem 1.6

Remark 1.8. A function f : T2 → R must have a global minimum and a global maximum
since T2 is compact. From the above theorem, it’s easy to see that it must also have at
least one saddle point, i.e. there’s no way to get T2 by a sequence of 0-handle and 2-handle
attachments.
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Figure 1.3. The sublevel sets S≤a of the height function T2 → R as a increases.

1.2. Morse homology basics and consequences

Let f : Mn → R be a Morse function. Let µ be a Riemannian metric on M which
satisfies the Morse–Smale condition (roughly this means that µ is “generic”). Put

CMorse
i (f ; K) := K〈criti(f)〉

denote the module over some chosen coefficient ring K which is freely generated by the index
i critical points of f . We have boundary operators:

CMorse
n (f ; K)

∂n−→ CMorse
n−1 (f ; K)

∂n−1−−−→ · · · ∂1−→ CMorse
0 (f ; K).

The precise definition of ∂k is somewhat technical, but roughly it counts “gradient flow lines”
between critical points with Morse index differing by 1. Namely, given p+ ∈ CMorse

k (f ; K)
and p− ∈ CMorse

k−1 (f ; K), we consider maps u : R→M satisfying{
lim

s→±∞
u(s) = p±

(∂su)(s) = −(∇µf)(u(s)) for all s ∈ R.

Then we have ∂k(p−) = sign(u)p+ + · · · , with contributions from all other gradient flow lines
with negative asymptotic p−. Here the gradient flow lines are counted modulo translation in
the s variable, and with a certain sign, ε(u) ∈ {1,−1} (which we can ignore if say K = Z/2).
We then put

HMorse
k (f ; K) := ker (∂k)/im (∂k+1).

Theorem 1.9. We have HMorse
k (f ; K) ∼= Hsing

k (M ; K).

As a first consequence, observe that we must have

|criti(f)| ≥ rankHi(M ; Z).

Example 1.10. Any Morse function f : T2 → R must have a least two saddle points,
since H2(T2; Z) ∼= Z2 has rank two.

A second consequence is:
n∑
i=0

(−1)i|criti(f)| = χ(M),

where χ(M) denotes the Euler characteristic ofM . Indeed, a basic fact about chain complexes
is that the alternating sum of ranks is unchanged after passing to homology.

Example 1.11. Figure 1.4 depicts a Morse function S2 → R with four critical points.
Namely, we have crit0 = {p0}, crit1 = {p1}, crit2 = {p2, p3}.
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Figure 1.4. A Morse function S2 → R with four critical points.

Example 1.12. There exists a Morse function f : CPn → R all of whose critical points
have even Morse index. Hence the Morse complex is

CMorse
2n (f ; K)→ 0→ CMorse

2n−2 (f ; K)→ · · · → 0→ CMorse
0 (f ; K),

and therefore we have HMorse
i (f ; K) = CMorse

i (f ; K) for i = 0, . . . , n. In particular,

Hi(CPn; Z) ∼= Z|criti(f)|.

Example 1.13. We have p ∈ criti(f) if and only if p ∈ critn−i(−f). By dualizing the
Morse complex for f , we get a complex

C∨n (f)
∂∨n←−− C∨n−1(f)

∂∨n−1←−−−← · · · ∂∨1←−− C∨0 (f)

which computes the Morse cohomology of f , and this is precisely identified with the Morse
complex of −f :

C0(−f)← C1(−f)← · · · ← Cn(−f).

We then have Hi
Morse(−f) ∼= HMorse

n−i (f), which is Poincaré duality.

In Example 1.11, we have ∂1(p1) = p0− p0 = 0, ∂2(p2) = p1, and ∂2(p3) = p1. Note that
there are e.g gradient flow trajectories from p2 to p0, but these do not appear in the appear
complex since these critical points index differing by two rather than one. We see that p1 is
a boundary, and hence does not contribute to the homology of S2. A natural question is
whether the critical point p1, and particularly the gradient flow trajectory from p2 to p1,
is “visible” in some sense. It turns out that this flow line does not contribute to the Morse
homology, but it does contribute to the filtered Morse homology. In fact, we will see the
filtered Morse homology imposes restrictions on the “geometry” of the function f : S2 → R.



LECTURE 2

Quantitative Morse homology

2.1. Toy problem

Let Mn be a closed manifold. For a function f : M → R, let ||f || := max
x∈M

|f(x)| denote

its “uniform norm”. In the following, let h : S2 → R denote the Morse function with four
critical points depicted in Figure 1.4. Let F denote the set of Morse functions on S2 with
exactly two critical points (note that these necessarily have index 0 and 2 respectively).

Problem 2.1. What is inf
f∈F
||h− f ||? In other words, how well can the Morse function

h with four critical points be approximated by a Morse function with only two critical points?

We give a (partial) answer to the above toy problem with the following:

Proposition 2.2. We have inf
f∈F
||h− f || ≥ 1

2 (q2 − q1).

Idea of proof. We proceed as follows (with the various ingredients to be introduced
shortly):

(1) to f we associate a filtered chain complex CMorse
∗ (f)

(2) to this filtered chain complex CMorse
∗ (f) we associate a persistence module V (f)

(3) to the persistence module V (f) we associate a barcode B(V (f))
(4) barcode B(V (f)) has a boundary depth β1(B(V (f))) ∈ R≥0.

Roughly, a persistence module is a collection of K modules Vt indexed by the real numbers,
along with maps Vs → Vt for all s < t which are coherent under compositions. A barcode is
roughly a multiset of interals - see Figure 2.1 for a pictorial representation. The boundary
depth of a barcode is by definition the length of the longest finite bar, or zero in the event
that there are no finite bars.

In turns out that all of these objects admit natural metrics:
(1) for functions f, g : M → R we use the uniform distance ||f − g||
(2) for two persistence modules V,W , we have the interleaving distance dint(V,W )
(3) for two barcodes B,B′, we have the bottleneck distance dbot(B,B′).

Moreover, we have:
(1) the association f 7→ V (f) is a 1-Lipschitz map from the set of Morse functions

equipped with the uniform distance to the set of persistence modules equipped
with the interleaving distance

(2) the association V 7→ B(V ) is an isometry from the set of persistence modules
equipped with the interleaving distance to the set of barcodes equipped with the
bottleneck distance

(3) the boundary depth is a 2-Lipshitz map from the set of barcodes equipped with
the bottleneck distace to R (with the Euclidean metric).

9
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Figure 2.1. Left: an example of a barcode, i.e. a multiset of intervals.
Note that some are finite and some are infinite, and some intervals may be
repeated. Center: the barcode of the Morse function h : S2 → depicted in
Figure 1.4. Right: the barcode of a Morse function f : S2 → R with exactly
two critical points.

Recall that a map F : X → Y between metric space (X,µX) and (Y, µY ) is K-Lipschitz if
µY (F (x1), F (x2)) ≤ KµX(x1, x2) for all x1, x2 ∈ X. Moreover, we claim that the barcodes
of h and f ∈ F are as depicted in Figure 2.1. As we will see, the infinite bars correspond to
homology classes, while the finite bars record features of a more quantitative nature.

Taking this all for granted for the moment, we can now finish off the proof. Namely, for
f ∈ F we have:

||f − h|| ≥ dint(V (f), V (h)) = dbot(B(V (f)),B(V (g))) ≥ 1
2 |β1(B(V (f)))− β1(B(V (h)))|

= 1
2 |0− (q2 − q1)|

= 1
2 |q2 − q1|.

�

2.2. Filtered chain complexes

Let us now introduce some of these objects in the above proof more carefully. We begin
with:

Definition 2.3. A filtered chain complex is a chain complex (C, ∂) and a collection
of subcomplexes C<r ⊂ C, r ∈ R, such that C<r ⊂ C<r′ for r < r′ and

⋃
r∈R

C<r = C.

Here C<r being a subcomplex of C means that from the differential ∂ preserves C<r,
given an induced differential C<r → C<r (which we often still denote by ∂). Note that
the chain complex in C need not be graded, although it will often be the case that our
chain complex has a natural Z grading (as in singular chains) or at least a Z/2 grading. We
typically write C∗ instead of C if we wish to emphasize the grading.

Remark 2.4. In the future we will often want to impose some additional technical
assumptions on our filtered chain complexes. For example, it is often useful to assume that
C<r = {0} for r sufficiently small.

Example 2.5. Given a continuous function f : M → R, put

Csing,<r
k := Csing

k (S<a),

with S<a := f−1((−∞, a)). In other words, Csing
k consists of linear combinations of continu-

ous maps from the k-simplex ∆k to M whose images lie “below” the level set {f = a}. This
makes Csing

∗ into the structure of a filtered chain complex.
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2.3. Filtered Morse theory

If f : M → R is a Morse function, then the Morse complex CMorse
∗ (f) is also naturally

a filtered chain complex. In order to explain this, let us expose a few more details about
the Morse complex. Recall that we put CMorse

k (f) = K〈critk(f)〉. The differential ∂k :
CMorse
k (f)→ CMorse

k−1 (f) is a K-linear map whose value on a basis element p− ∈ critk(f) takes
the form

∂k(p−) =
∑

p+∈critk−1(f)

# (M(p−; p+)/R) p+.

HereM(p−; p+) denotes the moduli space of gradient descent flow lines from p− to p+, i.e.
the space of maps u : R→M such that ∂su = −∇µf ◦ u and lim

s→±∞
u(s) = p±.

Recall that µ is a chosen Riemannian metric on M satisfies the Morse–Smale condition,
defined as follows. Since −∇µf is a vector field on a closed manifold M , it has a time-t flow
for all t ∈ R, which we denote by φt ∈ Diff(M).

Definition 2.6. Given a critical point p ∈ crit(f), the stable manifold is

W s(p) := {x ∈M | lim
t→∞

φt(x) = p}.

Similarly, the unstable manifold is

Wu(p) := {x ∈M | lim
t→−∞

φt(x) = p}.

Roughly, W s(p) is the set of all points which “descend” to p, and Wu(p) is the set of
all points which ‘ascend” to p. It turns out that Wu(p) is diffeomorphic to an open disk of
dimension indf (p), and W s(p) is diffeomorphic to an open disk of codimension indf (p), i.e.
dimension n− indf (p).

Definition 2.7. The pair (f, µ) is Morse–Smale if W s(p) and Wu(q) intersect trans-
versely for all p, q ∈ crit(f).

Recall that two submanifolds A,B ⊂ M are said to intersect transversely if for every
x ∈ A ∩B we have TxA+ TxB = TxM . In particular, this holds vacuously if A ∩B = ∅.

A consequence of the above definition is that for any p−, p+ ∈ crit(f) with ind(p−) >
ind(p+),M(p−; p+) is a smooth manifold of dimension ind(p−)− ind(p+). Moreover, there
is a free R-action on M(p−; p+) given simply by translating. Namely, for r ∈ R we put
r · u := ur, where ur(s) = u(s + r). Then the quotient manifold M(p−; p+)/R is also a
smooth manifold of dimension ind(p−)− ind(p+)− 1 (not necessarily closed or compact!).

It turns out that we can orient each of the moduli spacesM(p−; p+)/R, at least if M is
oriented. In brief, these orientations are naturally induced by picking (arbitrarily) orientations
on all of the stable manifolds of critical points of f , which in turn induce orientations on
all of the unstable manifolds. In the case ind(p−) = ind(p+) + 1, M(p−; p+)/R becomes
an oriented 0-manifold, which means a collection of points, each with an associated sign ±
attached to it. We then denote by #M(p−; p+) the signed count of such points. Note that
this count is only legitimate if the number of such points is finite. This turns out to be the
case by a compactness theorem.

Now observe that #M(p−; p+)/R can only be nonzero if f(p−) ≥ f(p+). Indeed, f
decreases along gradient descent trajectories. Therefore if we put

CMorse,<r
k (f) := K〈p ∈ critk(f) | f(p) < r〉,

then the Morse differential ∂k maps CMorse,<r
k (f) to CMorse,<r

k−1 (f). This makes CMorse
∗ (f)

into a filtered chain complex.
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Remark 2.8. Various nontrivial analytic facts go into the proof that ∂Morse squares to
zero (and similarly for various other structural properties of Morse homology). In brief, the
proof proceeds by analyzing the moduli spacesM(p−; p+)/R whenever ind(p−) = ind(p+) + 2.
These are 1-dimensional manifolds which are not typically compact, but they admit natural
compactifications in terms of “broken flow lines” going from p− to an intermediate point
q with ind(q) = ind(p−) − 1, and then proceeding from q to p+. Proving this requires a
compactness theorem, which states that we really do get something compact after adding in
these broken flow lines, and also gluing theorem, which states that this compactification really
does have the structure of a manifold with boundary. Combining this with the fact that the
(signed) count of boundary points of an (oriented) 1-dimensional manifold with boundary is
zero translates into the algebraic relation (∂Morse)2 = 0 (check this!).

For two different Morse functions f, g : M → R, we know that the corresponding Morse
homologies HMorse

∗ (f) and HMorse
∗ (g) are isomorphic, since these are both isomorphic to the

singular homology of M . However, the filtered chain complexes CMorse
∗ (f) and CMorse

∗ (g) are
not isomorphic. There are natural chain homotopy equivalences

CMorse
∗ (f) CMorse

∗ (g)
φ

ψ
,

meaning that φ and ψ are chain maps and the compositions φ ◦ ψ and ψ ◦ φ are homotopic
to the identity, but these do not preserve filtrations. More precisely, we have

φ(CMorse,<r
∗ (f)) ⊂ CMorse,<r+δ

∗ (g) and ψ(CMorse,<r
∗ (g)) ⊂ CMorse,<r+δ

∗ (f),

where δ = ||f − g||.
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Persistence modules and barcodes

We begin with:

Definition 3.1. A persistence module (over a field F) is a family of finite dimensional
vector spaces {Vt}t∈R, along with linear maps πs,t : Vs → Vt for all s < t such that we have
πt,r ◦ πs,t = πs,r for all s < t < r.

Example 3.2. Given a filtered chain complex {C<r∗ }r∈R, we get a persistence module
by putting Vt := H(C<r∗ ), and letting πs,t : H(C<s∗ ) → H(C<t∗ ) be the map induced by the
inclusion C<s∗ ⊂ C<t∗ . Note that πs,t is not necessarily injective.

Example 3.3. Given a Morse function f : M → R, we get a persistence module V (f)
with V (f)t := HMorse

∗ (S<t), where S<t := {x ∈ M | f(x) < t}. We also get persistence
submodules for each k = 0, . . . ,dimM by looking only at degree k homology classes. Note
that we could also replace Morse homology with e.g. singular homology.

Definition 3.4. Let us call a persistence module V finite type if
• for all but finitely many t ∈ R, there is an open neighborhood U of t such that πr,s
is an isomorphism for all r, s ∈ U with r < s
• for some t0, we have Vt = {0} for all t ≤ t0.

Definition 3.5. A persistence module V is lower semi-continuous if for any t ∈ R
there exists ε such that πs,t is an isomorphism for any t− ε < s < t.

The following example plays the role of a basic building block in the theory of persistence
modules:

Example 3.6. For a < b ≤ ∞, we have a persistence module F(a, b], called an “interval
module”, where

F(a, b]t =

{
F t ∈ (a, b]

0 otherwise,

and we put

πs,t =

{
1 s, t ∈ (a, b], s < t

0 otherwise.

Remark 3.7. Observe that the interval module F(a, b] is finite type and lower semi-
continuous. However, if we were define e.g. F[a, b) analogously, the lower semocontinuity
property would no longer hold.

Definition 3.8. A morphism F : V →W between persistence modules V,W consists
of a family of linear maps Ft : Vt → Wt for t ∈ R such that for each s, t ∈ R the following

13
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diagram commutes:
Vs Vt

Ws Wt.

Fs Ft ,

where the horizontal arrows are the structural maps πs,t for the persistence modules V and
W .

Example 3.9. There is a natural morphism F of persistence modules F(1, 2]→ F(0, 2]
where Ft = 1 for t ∈ (1, 2], and Ft = 0 otherwise. On the other hand, any morphism from
F(0, 1]→ F(0, 2] is necessarily trivial (check this).

More generally, this is a nontrivial morphism from F(a, b] to F(c, d] if and only if
c ≤ a < d ≤ b.

In order to define the interleaving distaince dint, we introduce a little bit more formalism.

Definition 3.10. Given a persistence module V and δ ∈ R, let V [δ] denote its δ-shift,
the persistence module with V [δ]t = Vt+δ and structural maps π[δ]s,t = πs+δ,t+δ.

Similarly, given a morphism F : V → W , we have the δ-shifted morphism F [δ] :
V [δ]→W [δ] defined by F [δ]t = Ft+δ.

Note that the structural maps πt,t+δ always define a morphism from V to its shift V [δ]:

Definition 3.11. Given a persistence module V and δ ∈ R, the shift morphism
ShδV : V → V [δ] is defined by (ShδV )t = πt,t+δ.

Definition 3.12. Given δ > 0, two persistence modules V,W are δ-interleaved if
there exist persistence morphisms F : V →W [δ] and G : W → V [δ] such that the following

diagrams commute: V W [δ] V [2δ]

Sh2δ
V

F G[δ]
W V [δ] W [2δ]

Sh2δ
W

G F [δ]
.

There is a natural way of composing two morphisms F : V →W and G : W → Q, and
there is also a notion of identity morphism 1V from a persistence module V to itself. We
will say that two persistence modules V and W are isomorphic if there exist morphisms
F : V → W and G : W → V such that G ◦ F = 1V and F ◦ G = 1W . One can view a
δ-interleaving as an “isomorphism up to an error of δ”.

Definition 3.13. Given two persistence modules V,W , their interleaving distance is
defined by

dint(V,W ) := inf{δ > 0 | V,W are δ-interleaved}.

Exercise 3.14. The interleaving distance is a pseudometric, i.e. it is symmetric and
satisfies the triangle inequality. However, a priori dint(V,W ) could be infinity.

Exercise 3.15. Given a finite type persistence module V , there exists t1 ∈ R such that
πs,t is an isomorphism for all s, t ≥ t1. Let V∞ denote Vt for t ≥ t1 (or, more precisely, V∞
is the direct limit of our direct system).

For finite type persistence modules V,W , show that dint(V,W ) < ∞ if and only if
dimV∞ = dimW∞.

In the future, it will sometimes be convenient to use the language of multisets:
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Definition 3.16. A multiset is a set S together with a function m : S → Z≥1. We
view a multiset as a set except that each element can be repeated a finite number of times,
and we view m(x) as the “multiplicity” of the element x ∈ S.

Equivalently, we can view a multiset as a set of pairs (x,mx) ∈ S × Z≥1, where each x
appears only once.

We will also sometimes write e.g. {1, 1, π, π, π} to denote the multiset with two copies of 1
and three copies of π.

Theorem 3.17 (Normal form theorem for persistence modules). Let V be a persistence
module over a field F which is finite type and lower semi-continuous. Then there is a unique
finite multiset of left open right closed intervals {(Ii,mi)}Ni=1 such that

V ∼= F(I1)⊕m1 ⊕ · · · ⊕ F(IN )⊕mN .

Here each Ii is of the form (ai, bi] with ai < bi ≤ ∞ and mi ∈ Z≥1.

Let B(V ) := {(Ii,mi)}Ni=1 denote the multiset as in Theorem 3.17. We call this the
barcode associated to the persistence module V .

We next define the bottleneck distance between barcodes. Given a barcode B and δ > 0,
let Bδ denote the result after throwing away all bars of length ≤ δ. For an interval I = (a, b],
put I−δ := (a− δ, b+ δ].

Definition 3.18. Two barcodes B,B′ are δ-matched if, after throwing some bars of
length ≤ 2δ in B and B′, there is a bijection between the remaining bars of B and B′ such
that such that the endpoints of corresponding intervals lie at distance ≤ δ from each other.

The last condition is equivalent to having I ⊂ J−δ and J ⊂ I−δ whenever I and J are paired
under the bijection.

Remark 3.19. Recall that B and B′ are defined to be multisets of intervals. Strictly
speaking, the bijection involved in Definition 3.18 is a bijection between sub-mulitisets of B
and B′. This means that if an interval is repeated some number of times in B or B′, then
some number (possibly zero) of its copies are involved in the bijection, and they need not all
pair with the same interval on the other side.

Example 3.20. Put B = {(0, 3], (0, 3], (1, 2]} and B′ = {(−1/2, 7/2], (1/2, 5/2]}. Then
B and B′ are 1/2-matched, where one possible bijection is

(0, 3]←→ (−1/2, 7/2]

(0, 3]←→ (1/2, 5/2]

(1, 2]←→ ∅,

where the last line means that we “throw out” the interval (1, 2], i.e. it is not involved in the
bijection.

Remark 3.21. Note that in the definition of a δ-matching, we can throw away any
number of intervals of length ≤ 2δ in B and B′, but we are also allowed to have some of
them participate in the bijection. We will sometimes refer to the intervals of length ≤ 2δ as
“short intervals”. For example, B = {(−.9, .9]} and B′ = {(−1.5, 1.5]} are 1-matched, with
the short interval (−.9, .9] necessarily participating in the bijection.

Definition 3.22. The bottleneck distance between two barcodes B,B′ is
dbot(B,B′) := inf{δ | B,B′ are δ-matched}.
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Exercise 3.23. The bottleneck distance dbot satisfies the axioms of a metric (at least
for barcodes at a finite distance from a given one), i.e. it is symmetric, satisfies the triangle
inequality, and is nondegenerate.

Remark 3.24. One manifestation of the above exercise is that we can compose a δ-
matching µ between B and B′ and a δ′-matching µ′ between B and B′′ to get a (δ+δ′)-matching
between B and B′′. Namely, we “compose whenever possible”, i.e. if I ∈ B is paired under µ
with J ∈ B′ and J is paired under µ′ with K ∈ B′′, then I is paired under µ′ ◦ µ with K.

By Theorem 3.17, there is a bijective correspondence between persistence modules and
barcodes. In fact, we have:

Theorem 3.25 (“Isometry Theorem”). The association V 7→ B(V ) is an isometry from
the set of persistence modules e‘q’uipped with the interleaving distance to the set of barcodes
equipped with the bottleneck distance.

In particular, dint is nondegenerate.



LECTURE 4

The normal form theorem, I

4.1. Topological data analysis

We begin by introducing an important source of persistence modules, namely finite
metric spaces. This plays a central role in so-called “topological data analysis” (see e.g.
[Car]), a framework which has become very popular in recent years.

Definition 4.1. A (finite) abstract simplicial complex is a pair (S,Σ), where S is
a finite set (the “vertices”) and Σ is a set of subsets of S (the “simplices”) which is closed
under passing to further subsets, i.e. such that

σ ∈ Σ and τ ⊂ σ =⇒ τ ∈ Σ.

The geometrical realization of (S,Σ) is a topological space defined by

|(S,Σ)| :=
⋃
σ∈Σ

conv{eφ(s)}s∈σ,

where φ : S → {1, . . . , |S|} is a chosen bijection, and e1, . . . , e|S| are the standard basis
vectors for R|S|.

Remark 4.2. The geometric realization of (S,Σ) can be understood as taking for each
σ ∈ Σ a standard simplex dimension |σ| − 1, and then gluing these together along facets, with
gluings determined by the subset relations in Σ. Recall that the standard k-simplex is

∆k := {(x0, . . . , xk) ∈ Rk+1 | x0 + · · ·+ xk = 1, x0, . . . , xk ≥ 0}.

Example 4.3. In the example depicted in Figure 4.1, we have vertex set S = {a, b, c, d}
and simplices Σ = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {c, d}, {a, b, c}}.

Definition 4.4. Let X be a finite metric space, with distance function d : X×X → R≥0.
Given ε ∈ R>0, the Vietoris–Rips VR(X, ε) is the simplicial complex with vertex set X,
such that σ = {x0, . . . , xk} ⊂ X is a k-simplex if and only if we have d(xi, xj) < ε for all
1 ≤ i, j ≤ k.

Figure 4.1. An example of simplicial complex with 4 vertices

17
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Figure 4.2. A point cloud which resembles a circle.

It is helpful to think of the family of Vietoris–Rips complexes VR(X, ε) as ε ranges over
all positive real numbers:

• for ε > 0 sufficiently small, VR(X, ε) is a discrete space, i.e. there are no k-simplices
for k ≥ 1

• for ε� 0, VR(X, ε) is equivalent to a (|X| − 1)-dimensional simplex ∆|X|−1, i.e.
every subset of X corresponds to a simplex in VR(X, ε)

• VR(X, ε) = VR(X, ε′) unless there is a pair x, x′ ∈ X with d(x, x′) ∈ [ε, ε′].

The basic premise of topological data analysis is as follows. Given some collection of
data points, along with a natural way of measuring pairwise distances, we get a finite metric
space X. For example, starting with a “point cloud”, i.e. a finite subset of RN , we typically
measure distances using the standard Euclidean metric. Now we imagine that there is
some “true” topological space which underlies our dataset. For example, for the point cloud
depicted in Figure 4.2, visual inspection suggests that our data comes from a space which is
homeomorphic (or at least homotopy equivalent) to a circle.

Granted, since our dataset is finite and most likely involves some noise (i.e. small random
errors), we cannot simply take e.g. the subspace topology on X, as that would just give
the discrete topology. Rather, the simplicial complex VR(X, ε) is one way of trying to cook
up a topological space which hopefully approximates the “true” topology (note that there
are also several common variations on the Vietoris–Rips complex which arise in practice
applications - see e.g. [Car]). However, as the above discussion illustrates, the topology
of VR(X, ε) is quite sensitive to the choice of ε. In the example of Figure 4.2, it is evident
that VR(X, ε) will not be homotopy equivalent to a circle if we take ε too small or too large.
In this example the best choice is to take ε to be roughly the distance between any two
“consecutive” points. However, for a general dataset with many more points and of much
higher dimension it is often fair from clear what a good choice of ε is.

Fortunately, we can avoid making any choice of ε > 0 by considering all possibilities
simultaneously and studying the resulting persistence module {H∗(VR(X, t))}t∈R>0

and its
corresponding barcode B. Long bars in B should correspond to homology classes which
“persist” for a large range of ε, and hence are topologically significant for our dataset. By
constrast, we will see various short bars which correspond to random noise and hence are
essentially negligible. For the example in Figure 4.2, we expect to see two long bars, one in
homological degree zero and one in homological degree one (corresponding to the homology
groups of the circle), plus a large number of short bars in various degrees which we can safely
ignore.

In brief, given a finite metric space X, viewed as a dataset, we have a barcode B, which
we expect to be a good proxy for topological (or at least homological) “features” of our
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dataset. In practical applications, we could e.g. feed the barcode B (or some function applied
to it) into an auxiliary machine learning algorithm as part of our pipeline.

4.2. Several versions of the normal form theorem

Recall that a partially ordered set is a set S equipped with a binary relation “≤”
which is reflexive, anti-symmetric, and transitive. It is totally ordered if for any two
elements x, y we have either x ≤ y or y ≤ x.

Definition 4.5. Let P be a partially ordered set, viewed as a category with one object
for each element x, with a unique morphism x→ y whenever we have x ≤ y. Given another
category C, a P-persistence object in C is a functor from P to C. Similarly, a morphism
between two P-persistence objects in C is a natural transformation between the corresponding
functors.

In particular, a Z≥0-persistence F-vector space (over a field F) consists of a collection of vector
spaces Vi, i ∈ Z≥0, along with linear maps Vi → Vi+1 for each i ∈ Z≥0. A Z≥0-persistence
abelian group is the same thing as a nonnegatively graded module over the polynomial ring
Z[t]. Unfortunately there is apparently no nice classification theorem for graded modules
over Z[t], but the situation becomes much more favorable if we work over a field and make a
tameness assumption (akin to our finite type condition in the case of R-persistence).

Definition 4.6. A Z≥0-persistent F-vector space V is tame if each Vi is finite dimen-
sional and the persistence map Vi → Vi+1 is an isomorphism for i sufficiently large.

Recall that finitely generated modules over a principle ideal domain (e.g. Z or F[t]) uniquely
decompose into a direct sum of free and cyclic modules. This is a generalization of the
classification theorem for finitely generated abelian groups (see e.g. [DF]). In particular, a
graded extension of this result states that for any nonnegatively graded finitely generated
F[t]-module V we have

V ∼=
M⊕
i=1

F[t][−ai]⊕
N⊕
j=1

F[t]/(tlj )[−bj ],

where for a module M we denote by M [−a] the same module but with the grading shifted
upward by a.

Proposition 4.7. A Z≥0-persistence F-vector space is tame if and only if the corre-
sponding F[t]-module is finitely generated.

Using Proposition 4.7, we get a corresponding normal form theorem for tame Z≥0-
persistent F-vector spaces. Under this translation, each free factor F[t][−a] corresponds to
an interval module F[a,∞), while each cyclic factor F[t]/(tl)[−b] corresponds to an interval
module F[b, b+ l].

Let us also briefly mention a more general version of Theorem 3.17:

Theorem 4.8 ([CB]). Let R be a totally ordered set, and let V be an R-persistence
F-vector space such that Vr is finite-dimensional for each r ∈ R. Then V isomorphic to a
direct sum of (possibly infinitely many) interval modules, and moreover this decomposition is
unique up to reordering the factors.
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The normal form theorem II

In this lecture we prove Theorem 3.17. We first prove the uniqueness part, and then
existence. We mostly follow the exposition in [PRSZ, §2.1].

5.1. Proof of the normal form theorem: uniqueness

We begin by proving the uniqueness part of Theorem 3.17. That is, assuming we have
an isomorphism

V ∼=
N⊕
i=1

F(ai, bi]
⊕mi ,(5.1)

we need to show that the intervals (ai, bi] and their multiplicities mi are uniquely determined
(up to reordered) by the isomorphism type of V .

Example 5.1. Consider the persistence module V := F(0, 3] ⊕ F(1, 2] versus V ′ :=
F(0, 2]⊕F(1, 3]. Uniqueness implies that these cannot be isomorphic, since they have different
barcodes. However, note that we have dimVt = dimV ′t for all t ∈ R. To distinguish them,
we need to look at the corresponding persistence maps πs,t and π′s,t. For example, we can
observe that π1/2,5/2 : V1/2 → V5/2 is nonzero, whereas π1/2,5/2 : V ′1/2 → V ′5/2 is necessarily
trivial. It is easy to check that the ranks of these maps would have to coincide if V and V ′
were isomorphic.

It will be convenient to introduce the following language:

Definition 5.2. Given a persistence module V , a point t ∈ R is spectral if for any
neighborhood U of t there exist r < s in U such that πr,s is not an isomorphism. Let spec(V )
denote the set of all spectral points of V , together with ∞.

Let c1 < · · · < cM denote the endpoints (both left and right) of all finite intervals involved
in our decomposition (5.1), and put cM+1 :=∞. Note that we have spec(V ) = {c1, . . . , cM+1}.
Moreover, if V and V ′ are isomorphic persistence modules then we have spec(V ) = spec(V ′).

For r < s, let mr,s denote the multiplicity of the interval (r, s] in our decompostion
(in particular mr,s = 0 the interval (r, s] does not appear). It suffices to show that mr,s is
determined from the isomorphism type of V . Since mr,s = 0 unless r, s ∈ spec(V ), it suffices
to extract the numbers mci,cj for all 1 ≤ i < j ≤ ∞.

Let br,s denote the rank of the map πr,s. In the spirit of Example 5.1, this depends only
on the isomorphism type of V . At the same time, in terms of the decomposition (5.1), we
have

br,s =
∑
ci<r
cj≥s

mci,cj .(5.2)

20
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Here the sum is over all 1 ≤ i, j ≤M + 1 such that ci < r and cj ≥ s, and (5.2) follows from
the observation that each interval module F(a, b] contributes 1 to mr,s if r > a and s ≤ b,
and it contributes 0 otherwise. For 1 ≤ i < j ≤M + 1 we have

bci,cj =
∑
α<i
β≥j

mcα,cβ =
∑
α≤i−1
β≥j

mcα,cβ .

We should be able to determine the multiplicity of the interval (ci, cj ] by measuring how
bci,cj changes as we increment or decrement i and j. More formally, we have:

bci+1,cj − bci,cj =
∑
α≤i
β≥j

mcα,cβ −
∑
α≤i−1
β≥j

mcα,cβ(5.3)

=
∑
α=i
β≥j

mcα,cβ ,(5.4)

and similarly

bci+1,cj+1 − bci,cj+1 =
∑
α=i

β≥j+1

mcα,cβ .(5.5)

Subtracting (5.5) from (5.4), we have(
bci+1,cj − bci,cj

)
−
(
bci+1,cj+1 − bci,cj+1

)
=
∑
α=i
β=j

mcα,cβ = mci,cj .(5.6)

5.2. Proof of the normal form theorem: existence

The following definition will be convenient for our proof:

Definition 5.3. Given a persistence module V , a persistence submodule W ⊂ V is
semi-surjective if there exists t0 ∈ R such that:

• Wt = Vt for t ≤ t0
• πr,s : Wr →Ws is surjective for any t0 < r < s.

The key lemma is:

Lemma 5.4. Let V be a persistence module which is finite type and lower semi-continuous,
and let W ( V be a proper persistence submodule which is semi-surjective. Then there exists
another semi-surjective persistence submodule W# ⊂ V which is isomorphic to the direct
sum W ⊕ F(a, b] for some a < b ≤ ∞.

The existence part of Theorem 3.17 now follows immediately from Lemma 5.4 by
induction, starting with the trivial submodule {0} ⊂ V . It therefore remains to prove the
lemma.

Let W ⊂ V be as in Lemma 5.4. As before, put spec(V ) = {c1, . . . , cM , cM+1 = ∞}.
Note that we have spec(W ) ⊂ spec(V ), and t0 as in Definition 5.3 must lie in spec(V ). For
some γ ∈ {1, . . . ,M} we have Wci = Vci for i = 1, . . . , γ − 1 and Wcγ ( Vcγ . Pick any
zcγ ∈ Vcγ \Wcγ . For k > γ, put

zck := πcγ ,ck(zcγ ) ∈ Vck .
There are two possibilities to consider:

(1) We have zck /∈Wck for k = γ, γ + 1, . . . ,M + 1.
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(2) For some k > γ we have zck ∈Wck .
Case (1) will correspond to the interval (a, b] in Lemma 5.4 being infinite (i.e. b =∞), while
(2) will correspond to a finite interval. Let us focus on (2), case (1) being similar.

For k > γ, put zck := πcγ ,ck(zcγ ) ∈ Vck . Let δ be the smallest k > γ for which zck ∈Wck .
By semisurjectivity, we can find xcγ ∈Wcγ such that πcγ ,cδ (xcγ ) = zcδ . Put ycγ := zcγ − xcγ
and yck := πcγ ,ck(ycγ ) for k > γ. Note that we have yck ∈ Vck \Wck for k = γ, . . . , δ − 1 and
ycδ = 0.

Now let us extend the definition of yt ∈ Vt to all t ∈ R as follows. Firstly, for t ≤ cγ−1

or t > cδ−1 we put yt := 0. Recall that yck is already defined for k = γ, γ + 1, . . . . For
t ∈ (yck , yck+1

) for some k, we put yt := π−1
t,ck+1

(yck+1
). The fact that πt,ck+1

is invertible
comes from the fact that there are no spectral points in [t, ck+1), together with the lower
semicontinuity property.

Exercise 5.5. Putting Pt := F〈yt〉 for t ∈ R, this defines a persistence submodule P ⊂ V
such that:

• P is isomorphic to F(cγ−1, cδ−1]
• Wt ∩ Pt = {0} for all t, and together W and P span a persistence submodule
W# := W + P which isomorphic to the direct sum W ⊕ F(cγ−1, cδ−1]

• W# ⊂ V is semi-surjective.
This completes the proof of Lemma 5.4.
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Computing persistent homology

Let us now try to get a better feel for persistent homology by computing it in a concrete
example. We borrow the running example from [ZC], and we recommend that article for a
much more detailed discussion and additional tricks to speed up the computation.

Let us start by considering the simplicial complex represented in Figure 6.1. Being a
filled square, its (ordinary) homology over Z is trivial except for a copy of Z in degree 0.
However, if we wish to compute its homology directly from the direction, one way is to
represent each of the boundary maps ∂i by a matrix Mi, and then compute the Smith normal
forms of these matrices.

Definition 6.1. Given an m× n matrix M with coefficients in a principal ideal domain
R. Its Smith normal form is an m× n matrix D of the form D = AMB, where

• A is an invertible m×m matrix
• B is an invertible n× n matrix
• the only nonzero entries of D are D1,1, . . . , Dk,k for some k ≤ min(m,n), where
Di,i divides Di+1,i+1 for i = 1, . . . , k − 1.

The entries D1,1, . . . , Dk,k, called the elementary divisors of M , are uniquely determined
up to multiplication by units.

In particular, Z is a principal ideal domain. It turns out that one way to compute the
homology of a chain complex over Z is to compute the Smith normal (or more specifically
the elementary divisors) of the matrix representatives of the differentials. Assume that each
Ci is free abelian group, and let ri denote its rank. Suppose that ∂i : Ci → Ci−1 has matrix
representative Mi with respect to the chosen bases of Ci and Ci−1. Suppose that Mi has
elementary divisors λi,1, . . . , λi,ki . Then it follows that

• ker ∂i has rank ri − ki
• im ∂i has rank ki
• Hi is isomorphic to Z/λi+1,1 ⊕ · · · ⊕ Z/λi+1,ki+1

⊕ Zri−ki−ki+1 .
Given a matrix M , we can apply elementary column operators (this corresponds to

changing the basis of the domain) and elementary row operations (this corresponds to

Figure 6.1. A simplicial complex.

23



24 6. COMPUTING PERSISTENT HOMOLOGY

Figure 6.2. A filtered simplicial complex.

changing the basis of the codomain) until M in Smith normal form, D = AMB, where A
and B correspond to the change of basis matrices.

In the example represented by Figure 6.1, ∂1 has matrix representative


ab bc cd ad ac

a −1 0 0 −1 −1
b 1 −1 0 0 0
c 0 1 −1 0 1
d 0 0 1 1 0


and after changing bases this becomes


cd bc ab z1 z2

d−c 1 0 0 0 0
c−b 0 1 0 0 0
b−a 0 0 1 0 0
a 0 0 0 0 0


with z1 := ad− bc− cd− ab and z2 := ac− bc− ab.

Now consider the (discretely) filtered simplicial complex X0 ⊂ · · · ⊂ X5 represented by
Figure 6.2. Computing the persistent homology over Z/2 is equivalent to viewing it as a
module over Z/2[t] and computing its ordinary homology. In turn, we can achieve this by
computing the Smith normal form of the matrix representatives of the differentials, now
viewed as matrices with coefficients in Z/2[t].

For example, ∂1 can be represented as a matrix over (Z/2)[t] by:

∂1 =


ab bc cd ad ac

a t 0 0 t2 t3

b t t 0 0 0
c 0 1 t 0 t2

d 0 0 t t 0

.
For example the 1-simplex ac first appears in X3, whereas the 0-simplex c first appears in
X1. Therefore the entry in the column ac and row c is t2, represented a filtration difference
of two. Note that only the difference in filtration is recorded by the t powers of the matrix
entries. Recall that we are actually computing the homology of a graded (Z/2)[t]-module,
and the actual filtration level of e.g. ac is taken into account by this extra grading data.
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Now, after elementary row and column operations, we get the Smith normal form:

∂1 =


bc cd ab z1 z2

c+tb 1 0 0 0 0
c+d 0 t 0 0 0
b+a 0 0 t 0 0
a 0 0 0 0 0


where z1 = ad+ t · bc+ cd+ t · ab and z2 = ac+ t2 · ab+ t2 · bc. Note that all of these basis
elements are homogeneous.

We can now read off the H0 barcode. In general, a bar with left endpoint k ∈ Z and right
endpoint l ∈ Z≥k corresponds a cycle σ first appearing in Xk, and a chain τ with ∂τ = σ
first appearing in Xl. Since ∂0 = 0, each of the basis elements c+ tb, c+ d, b+ a, a is a cycle.

• Since a is not a boundary, it corresponds a bar with left endpoint at 0 and no right
end point.

• Corresponding to ∂1(bc) = c+ tb we get a bar with both left and right endpoints
at 1.

• Corresponding to ∂(cd) = t(c+ d), we get a bar with left endpoint at 1 and right
endpoint at 2.

• Corresponding to ∂(ab) = t(b+ a), we get a bar with left endpoint at 1 and right
endpoint at 0.

Now consider ∂2 : C2 → C1. After performing elementary row operations which exactly
mirror the elementary column operations we performed for ∂1, we can write it in terms of the
basis bc, cd, ab, z1, z2 for C1. Moreover, it is easy to check that the elements c+ tb, c+d, b+a
cannot appear in the image of ∂2, as we must have ∂1 ◦ ∂2 = 0. We have

∂2 =

( abc acd

z2 t t2

z1 0 t3

)
,

and after changing bases we arrive at the Smith normal form:

∂2 =

( abc acd+t·abc

z2 t 0
z1 0 t3

)
.

It follows that there are two H1 bars, one with left endpoint 3 and right endpoint 4,
and another one with left endpoint 2 and right endpoint 5. Note that there are no bars
corresponding to H2, since there are no 2-cycles. Also, the unique bar with no right endpoint
corresponds to the fact that the homology of X is 1-dimensional in degree 0 and trivial
otherwise.

Exercise 6.2. Check some of the computations in this lecture.
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The isometry theorem

Our goal for this lecture is to discuss the proof of Theorem 3.25, which states that for any
pair of persistence modules V,W we have dint(V,W ) = dbot(B(V ),B(W )). For concreteness,
we will be assuming as before that V and W are persistence modules over a field F which are
finite type and lower semicontinuous. We will mostly follow the exposition of [PRSZ, §3],
which in turn is based on [BL]. For the sake of brevity we will give only a sketch, referring
the reader to the aforementioned references for more details.

7.1. Bottleneck distance bounds interleaving distance

We first establish the bound dint(V,W ) ≤ dbot(B(V ),B(W )). Assume that there is a
δ-matching between B(V ) and B(W ). Our goal is to find a δ-interleaving between V and W .

By the definition of a δ-matching (see §3), there is a bijection between some of the
intervals of B(V ) and some of the intervals of B(W ), such that:

• all of the intervals of length > 2δ are involved in this bijection
• if an interval I in B(V ) is paired with an interval J in B(W ), then the left endpoint
of I lies at distance ≤ δ from the left endpoint of J , and similarly for the right
endpoints.

Exercise 7.1. Show that for V = F(a, b], we have

ShδV =

{
1 if t ∈ (a, b− δ]
0 otherwise.

In particular, ShδV is the zero morphism if and only if b− a ≤ δ.

Suppose that I = (a, b] ∈ B(V ) is matched with J = (c, d] ∈ B(W ). In particular, we
must have |a − c| ≤ δ and |b − d| ≤ δ. We have F(J)[δ] = (c − δ, d − δ]. Note that since
c− δ ≤ a and d− δ ≤ b, the endpoints of F(J)[δ] lie to the left of the corresponding endpoints
of F(I).

Let us define a (possibly trivial) morphism FI : F(I)→ F(J)[δ] by

(FI)t =

{
1 if t ∈ (a, b] ∩ (c− δ, d− δ]
0 otherwise.

Similarly, define a morphism GJ : F(J)→ F (I)[δ] by

(GJ)t =

{
1 if t ∈ (c, d] ∩ (a− δ, b− δ]
0 otherwise.
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Then the composition GJ [δ] ◦ FI is

(GJ ◦ FI)t =

{
1 if t ∈ (a, b] ∩ (c− δ, d− δ] ∩ (a− 2δ, b− 2δ]

0 otherwise.

Note that we have (c− δ, d− δ] ⊃ (a, b] ∩ (a− 2δ, b− 2δ] = (a, b− 2δ], and hence GJ [δ] ◦ FI
is precisely Sh2δ

F(I) : F(I)→ F(I)[2δ] (recall Definition 3.11). Similarly, we have FI [δ] ◦GJ =

Sh2δ
F(J).
We now define morphisms F : V →W [δ] and G : W → V [δ] as follows. Recall that by

the normal form theorem, V and W are direct sums of interval modules, with one copy for
each bar of the corresponding barcode. For an unmatched interval I ∈ B(V ), we put F |I = 0.
Note that if I is an unmatched interval then it necessarily has length ≤ 2δ, and hence Sh2δ

F(I)

is the zero morphism. If I ∈ B(V ) is matched with J ∈ B(W ), we define F |I to have image
in F (J)[δ], and to be given by FI : F (I)→ F (J)[δ] as above. We define the morphism G
similarly, by putting together GJ as J ranges over matched intervals in B(W ), and taking G
to be zero on the remaining summands. By the above discussion, we have G[δ] ◦ F = Sh2δ

V

and F [δ] ◦G = Sh2δ
W , and hence V and W are δ-interleaved.

7.2. Interleaving distance bounds bottleneck distance

Now suppose that V and W are δ-interleaved. We seek to find a δ-matching of B(V )
and B(W ).

Let us begin with a simple special case as a warmup:

Example 7.2. Given interval modules V = F(I) and W = F(J) which are δ-interleaved,
we seek to prove that B(V ) and B(W ) are δ-matched. Put I = (a, b] and J = (c, d]. If both
of the intervals I and J have length ≤ 2δ, then their barcodes are immediately δ-matched.
Otherwise, assume without loss of generality that len(I) > 2δ. Then Sh2δ

V is not the zero
morphism, and hence we have nontrivial morphisms F : V →W [δ] and G : W → V [δ]. In
particular, we must have c− δ ≤ a < d− δ ≤ b and a− δ ≤ c < b− δ ≤ d (c.f. Example 3.9).
Since |a− c| ≤ δ and |b− d| ≤ d, there is an obvious δ-matching of B(V ) and B(W ).

In general, if V → W is any morphism, we will define an “induced matching” of B(V )
and B(W ), which we denote by µ(F ). This association is not generally functorial, i.e. for
composable morphisms F and G, µ(G◦F ) is not equal to the composed matching µ(G)◦µ(G).
Nevertheless, we will have:

Lemma 7.3. F : V →W [δ] and G : W → V [δ] define a δ-interleaving, then µ(F ) will be
a δ-matching between B(V ) and B(W ).

We will satisfy ourselves with defining the induced matching µ(F ), leaving the details of
Lemma 7.3 to the references.

Firstly, suppose that F : V → W is injective, in the sense that each Ft : Vt → Wt is
injective. For each b ∈ R ∪ {∞}, let

(a1, b] ⊃ · · · ⊃ (ak, b]

be the bars in B(V ) having right endpoint b, in order of nonincreasing length. Similarly, let

(a′1, b] ⊃ · · · ⊃ (a′k, b]

be the bars in B(W ) with right endpoint b.

Exercise 7.4. We have k ≤ l.
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Definition 7.5. If F : V →W is an injective morphism, we define a matching µinj(F )
between B(V ) and B(W ) as follows. For each b ∈ R ∪ {∞}, we match

(ai, b]←→ (a′i, b] for i = 1, . . . , k

∅←→ (a′i, b] for i = k + 1, . . . , l.

Now suppose that F : V →W is a surjective morphism. For a ∈ R ∪ {∞}, let

(a, b1] ⊃ · · · ⊃ (a, bk]

denote the bars of B(V ) with left endpoint a, in order of nondecreasing length, and similarly
let

(a, b′1] ⊃ · · · ⊃ (a, b′l]

denote the bars of B(W ) with left endpoint a.

Exercise 7.6. We have k ≥ l.

Definition 7.7. If F : V →W is a surjective morphism, we define a matching µsur(F )
between B(V ) and B(W ) as follows. For each a ∈ R ∪ {∞}, we match

(a, bi]←→ (a, b′i] for i = 1, . . . , l

(a, bi]←→ ∅ for i = l + 1, . . . , k.

We now define µ(F ) for any morphism F by a simple trick:

Definition 7.8. Given any morphism F : V →W , we write it as the composition

V im (F ) W,
Fsur Finj

where Fsur is surjective and is given by simply restricting the codomain to im (F ) (or more
precisely, doing this for each Ft), and Finj is injective is given by the natural inclusion. We
then put

µ(F ) := µinj(Finj) ◦ µsur(Fsur).

Example 7.9. Put V := F(1, 3]⊕ F(1, 2] and W := F(3, 4]⊕ F(0, 2]. Let F : V →W be
the morphism which is trivial on the factor F(1, 3], and restricts to the other factor as the
“identity whenever possible” morphism F(1, 2]→ F(0, 2]. Then µsur(Fsur) is

(1, 3]←→ (1, 2]

(1, 2]←→ ∅,

and µinj(Finj) is

(1, 2]←→ (0, 2]

∅←→ (3, 4],

and hence µ(F ) is

(1, 3]←→ (0, 2]

(1, 2]←→ ∅
∅←→ (3, 4].
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7.3. Boundary depth and its generalizations

The boundary depth played an important role in the proof of Proposition 2.2. Recall
that we stated during that proof that it is 2-Lipshitz as a function on the space of barcodes.
We are now ready to prove (a generalization of) this fact.

Definition 7.10. Given a barcode B, let βk(B) be the largest of the kth longest finite
bar, or 0 if there are fewer than k finite bars.

So given a barcode, we get real numbers β1(B) ≥ β2(B) ≥ . . . .
Proposition 7.11. For any pair of barcodes B,B′ and any k ∈ Z≥1 we have

|βk(B)− βk(B′)| ≤ 2dbot(B,B′).
The proof of Proposition 7.11 will involve the following purely combinatorial lemma (we

refer the reader to [PRSZ, §4.1] for a proof).

Lemma 7.12 (“Matching Lemma”). Given b1 ≤ · · · ≤ bN and c1 ≤ · · · ≤ cN real numbers,
we have

min
σ∈SN

max
i∈{1,...,N}

|bi − cσ(i)| = max
i∈{1,...,N}

|bi − ci|.

Here SN is the permutation group on N elements. In order words, if we view σ ∈ SN
as a “matching” between the bi and ci, and we define the “cost” of such a matching by
maxi∈{1,...,N}, then the optimal matching is given simply by the naive one corresponding to
the identity permutation.

Proof of Proposition 7.11. Suppose that we have a δ matching µ between B and B′.
Let I1, . . . , IN be the matched bars of B, ordered such that len(I1) ≥ · · · ≥ len(IN ). Similarly,
let J1, . . . , JN be the matched bars of B′, ordered such that len(J1) ≥ · · · ≥ len(JN ). The
matching µ corresponds to a permutation τ ∈ SN such that we match Ii ←→ Jτ(i) for
i = 1, . . . , N . In particular, we have

|len(Ii)− len(Jτ(i))| ≤ 2δ

for i = 1, . . . , N . We will prove

βk(B)− βk(B′) ≤ 2δ,(7.1)

with the analogous inequality with B and B′ swapped then following by symmetry.
We can assume βk(B) > 2δ, since otherwise (7.1) is immediate. Then the k largest bars

of B all have length > 2δ, and hence are all matched under µ, meaning that I1, . . . , Ik are
the k longest bars of B, whence βk(B) = len(Ik). Applying Lemma 7.12, we have

len(Ik)− len(Jk) ≤ max
i∈{1,...,N}

|len(Ii)− len(Ji)|

= min
σ∈SN

max
i∈{1,...,N}

|len(Ii)− len(Jσ(i))|

≤ max
i∈{1,...,N}

|len(Ii)− len(Jτ(i))|

≤ 2δ.

Note that there could be some bars of B which are longer than Jk but do not participate in
the matching, if len(Jk) ≤ 2δ. At any rate, Jk is the k′-longest bar of B′ for some k′ ≥ k,
and we have len(Jk) ≤ βk(B′), and hence

βk(B) = len(Ik) ≤ len(Jk) + 2δ ≤ βk(B′) + 2δ.

�



LECTURE 8

The Hamiltonian diffeomorphism group

Having discussed the abstract theory of persistence modules in the last few lectures, we
now introduce now additional geometry. In this lecture we discuss the group of symplectomor-
phisms of a symplectic manifold, and its notable subgroup of Hamiltonian diffeomorphisms.

8.1. Symplectic manifold basics

Some familiarity with symplectic geometry is helpful but we will attempt to give a
self-contained treatment, starting with some basic definitions.

Definition 8.1. A symplectic manifold is a smooth manifold M equipped with a
differential two-form ω ∈ Ω2(M) which is closed and nondegenerate. The latter means that
for each p ∈M , the map TpM → T ∗pM sending v to ω(v,−) is an isomorphism.

In particular, M must be even-dimensional. As usual, we will often abuse notation and
denote our symplectic manifold simply by M when the symplectic two-form ω is implicit.

Example 8.2. The standard symplectic form on R2n with coordinates (x1, . . . , xn, y1, . . . , yn)
is given by ωstd :=

∑n
i=1 dxi ∧ dyi.

Definition 8.3. Let (M,ω) be a symplectic manifold, and let H : M → R be a smooth
function. Since ω is nondegenerate, there is a unique vector field ∇ω(H) defined by

ω(∇ω(H),−) = dH.

This is the symplectic gradient of H. It is also called the Hamiltonian vector field
associated to H, denoted by XH .

Remark 8.4. Borrowing terminology from physics, we will also refer to H as a “Hamil-
tonian”, but from the mathematical point of view it is simply a smooth function.

As the name suggests, ∇ω(H) is defined just like the usual gradient of a function, except
using a symplectic form instead of a Riemannian metric. However, its behavior is very
different. Whereas the Riemannian gradient of H points in the direction of maximal increase,
the symplectic gradient is tangent to the level sets of H. More precisely, we have

Lemma 8.5. For any H : M → R, ∇ω(H), we have dH(XH) = 0.

Proof. By definition, dH(XH) = ω(XH , XH), and this vanishes because ω is a differ-
ential two-form and hence skew-symmetric. �

8.2. Hamiltonian flows and symplectomorphisms

If M is closed, then by flowing along the vector field XH , we get for each t ∈ R a
diffeomorphism FltH ∈ Diff(M). Finding the flow is equivalent to solving the ODE

γ̇(t) = XH(γ(t)), γ(0) = p

30



8.3. HAMILTONIAN DIFFEOMORPHISM GROUP 31

for each initial condition p ∈M , which leads to FltH(p) = γ(t). Note that finding the flow
of a vector field on a manifold which is noncompact can be problematic, as integral curves
could run off to infinity in finite time, but this is easily ruled out e.g. if we assume that
the vector field has compact support (a similar discussion applies to the case that M has
boundary).

Example 8.6 (classical mechanics). Consider a particle with one degree of freedom,
e.g. a bead moving along a wire. Let R2 with coordinates (q, p) be its phase space, where
q describes the position of the bead along the wire and p is the corresponding momentum
coordinate. Imagine also that there is some force on the bead, e.g. gravity, and we suppose
the force is conservative, meaning that it is given by the negative gradient of a potential
energy function V (q). The Hamiltonian H : R2 → R is then the total energy of the system,
i.e. potential energy plus kinetic energy:

H(q, p) = V (q) + 1
2p

2.

One can easily check that the corresponding Hamiltonian vector field is

XH = p∂q − (∂qV )∂p.

Hamilton’s formulation of classical mechanics states that the time evolution of the particle is
given by flowing along the Hamiltonian vector field XH . In the present example this amounts
to the ODE

q̇(t) = p(t)

ṗ(t) = −∂qV (q).

This system is easily seen to be equivalent to Newton’s second law q̈ = −∂qV .

Another basic result about Hamiltonian flows is that they preserve the symplectic form.

Definition 8.7. Given a symplectic manifold (M,ω), let

Symp(M,ω) := {Φ ∈ Diff(M) | Φ∗ω = ω}
denote the set of diffeomorphisms which preserve the symplectic two-form. This is easily seen
to be a subgroup of Diff(M), and its elements are called symplectomorphisms.

Lemma 8.8. Given a Hamiltonian H : M → R, we have FltH ∈ Symp(M,ω) for each t.

Proof. It suffices to show that the Lie derivative of ω in the direction of XH is zero,
and for this we can apply Cartan’s formula:

LXH (ω) = d(ω(XH ,−)) + (dω)(XH ,−,−) = d(dH) = 0.

�

8.3. Hamiltonian diffeomorphism group

We will also want to consider flows of time-dependent Hamiltonians, i.e. smooth
functions H : M × I → R. Given such an H, we denote by Ht : M → R the function H(−, t).
We will sometimes view H as a family of ordinary functions {Ht}t∈[0,1], Ht ∈ C∞(M). Note
that we get a corresponding time-dependent family of Hamiltonian vector fields {XHt}t∈[0,1].
We will denote the corresponding flow (now given by solving a time-dependent ODE) by
FltH or Flt{Ht}. We will say that H : M × I → R is autonomous if it is independent of t. In
the future, will usually assume by default that our Hamiltonians are time-dependent, unless
stated otherwise. Note that for an autonomous Hamiltonian we have FlsH ◦ Fl

t
H = Fls+tH ,

but this need not hold for a general time-dependent Hamiltonian.
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We are now ready to define the Hamiltonian diffeomorphism group:

Definition 8.9. Let (M,ω) a closed symplectic manifold, we put

Ham(M,ω) :=
{
Fl1H | H : M × I → R

}
.

It is not so important that we take the time 1 flow:

Exercise 8.10. For any τ ∈ [0, 1] and F : M × I → R, we have FlτF = Fl1G, where
G : M × I → R is given by Gt = τFτt.

Unlike Diff(M) or Symp(M,ω), it is not immediately obvious that Ham(M,ω) is a group.
This follows from the following proposition, which in fact shows that Ham(M,ω) is a normal
subgroup of Symp(M,ω).

Proposition 8.11.
(1) For φ, ψ ∈ Ham(M,ω), we have φ ◦ ψ ∈ Ham(M,ω). In fact, if φt = Flt{Ft} and

ψt = Flt{Gt}, then we have φt ◦ ψt = Flt{Ht}, where Ht := Ft +Gt ◦ φ−1
t .

(2) For φ ∈ Ham(M,ω), we have φ−1 ∈ Ham(M,ω). In fact, if φt = Flt{Ft}, then we
have φ−1

t = Flt{Ht}, where Ht := −Ft ◦ φt.
(3) For φ ∈ Ham(Mω) and θ ∈ Symp(M,ω), we have θ ◦ φ ◦ θ−1 ∈ Ham(M,ω). In

fact, if φt = Flt{Ft}, then we have θ ◦ φt ◦ θ−1 = Flt{Ht}, where Ht := Ft ◦ θ−1.

Before proving the above proposition, we prove a simple lemma which will be convenient
to invoke later on:

Lemma 8.12. Let M be a symplectic manifold, let K : M → R be a smooth function,
and let Q : M →M be a symplectomorphism. Then we have XK◦Q−1 = Q∗(XK).

Proof. Recall that, by definition of the pushforward of vector fields, we have

(Q∗XK)|p = dQ|Q−1(p)(XK |Q−1(p)) ∈ TpM
for each p ∈ M . Here XK |p ∈ TpM denotes the value of the vector field XK at p; we also
denote this sometimes by XK(p) when no confusion should arise from notational overload.
We also denote by dQ|Q−1(p) : TQ−1(p)M → TpM the derivative of Q at the point Q−1(p),
and so on. We will use write e.g. dQ(v) = dQ|p(v) for v ∈ TpM .

By nondegeneracy of the symplectic form ω, it suffices to show that for any v ∈ TpM we
have

ω(XK◦Q−1 |p, v) = ω(Q∗(XK)|p, v).

Since Q is a symplectomorphism, we have ω(dQ|p(w), dQ|p(v)) = ω(v, w) for any v, w ∈ TpM .
Therefore, we have

ω(Q∗(XK)|p, v) = ω(dQ|Q−1(p)(XK |Q−1(p)), v)

= ω(XK |Q−1(p), dQ|−1
Q−1(p)v)

= dK(dQ−1(v))

= d(K ◦Q−1)(v)

= ω(XK◦Q−1 |p, v),

as desired. �

We can also summarize the above lemma by writing

dQ(XK(p)) = XK◦Q−1(Q(p)) for all p ∈M.(8.1)
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Proof of Proposition 8.11. For (1), put θt := φt ◦ ψt. For p ∈M we have

∂t(θt(p)) = ∂t(φt ◦ ψt(p))
= XFt(φt ◦ ψt(p)) + dφt(XGt(ψ(p)))

= XFt(φt ◦ ψt(p)) +XGt◦φ−1
t

(φt ◦ ψt(p))
= XFt+Gt◦φ−1

t
(φt ◦ ψt(p))

= XHt(θt(p))

for Ht = Ft +Gt ◦ φ−1
t , and therefore we have θt = Flt{Ht}.

For (2), putting φt = Flt{Ft} and ψt = Flt{−Ft◦φt}, observe that by (1) we have

φt ◦ ψt = Flt{Ft−Ft◦φt◦φ−1
t }

= 1.

For (3), observe that using (8.1) we have

∂t(θ ◦ φt ◦ θ−1(p)) = dθ(X{Ft}(φt(θ
−1(p))))

= X{Ft◦θ−1}(θ ◦ φt ◦ θ−1(p)),

and hence θ ◦ φt ◦ θ−1 = Flt{Ft◦θ−1}. �

The following theorem of Banyaga (which we will simply state without proof) resolves
two natural questions about Ham(M,ω). Firstly, given a path γ : I → Ham(M,ω), by
definition each γ(t) is the time-1 flow of some time-dependent Hamiltonian on M , but it is
not immediately clear that the vector field ∂tγ is itself the Hamiltonian vector field of some
function M → R. Secondly, it is natural to ask wonder whether Ham(M,ω) is in a sense the
“smallest” geometrically meaningful subgroup of Symp(M,ω), or whether Ham(M,ω) itself
has nontrivial normal subgroups.

Theorem 8.13. Let (M,ω) be a closed symplectic manifold.
(1) If {γt}t∈[0,1] is any smooth path in Ham(M,ω) with γ0 = 1, then we have γt = FltH

for some H : M × I → R.
(2) Ham(M,ω) is a simple group, i.e. it has no nontrivial proper normal subgroups.

8.4. The C∞ topology

As we have seen, Ham(M,ω) is a group. It is also naturally a topological space. Indeed,
given closed smooth manifolds M and N , there is a natural topology on the set C∞(M,N)
of smooth maps F : M → N . In particular, this puts a topology on C∞(M,M), along with
its subspaces Diff(M),Symp(M,ω),Ham(M,ω), and so on.

For the reader’s convenience, let us briefly recall the definition of the topology on
C∞(M,N). Roughly speaking, two functions are considered “close” in this topology if all
their partial derivatives are “close”.

Definition 8.14. Let M and N be smooth manifolds, and assume that M is compact.
A subbasic neighborhood is a subset Q ⊂ C∞(M,N) of the following form. Suppose that
we have open subsets U ⊂M and V ⊂ N , and local coordinate charts φ : U → RdimM and
ψ : V → RdimN . Fix

• r ∈ Z≥0

• ε ∈ R>0

• a compact subset K ⊂ U
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• a smooth map F0 : M → N such that F0(K) ⊂ V .
Let Q be the set of all smooth maps F : M → N such that

• F (K) ⊂ V
• for each p ∈ φ(K), all of the partial derivatives of ψ ◦F ◦φ−1 at p of order at most
r differ from those of ψ ◦ F0 ◦ φ−1 by at most ε.

The topology on C∞(M,N) is the smallest one having subbasic neighborhoods as open sets,
i.e. open sets in C∞(M,N) are unions of finite intersections of subbasic neighborhoods.

Remark 8.15. If M is noncompact we can still define the above topology on C∞(M,N),
but since it only controls convergence on compact subsets of M it is called the “weak topology”,
and there is also a finer “strong topology” (see [Hir, §2.1] for more details).

In particular, using the above topology we can define:

Definition 8.16. We denote by Symp0(M,ω) ⊂ Symp(M,ω) the connected component
of the identity map. Note that this is also a subgroup.

Similarly, we denote by Diff0(M) ⊂ Diff(M) the connected component of 1. Note that
Ham(M,ω) is already connected, thanks to Exercise 8.10.

8.5. Normalized Hamiltonians and symplectic isotopies

By Theorem 8.13(1), the derivative of a path of Hamiltonian diffeomorphisms is a
Hamiltonian vector field. Note that the natural linear map H 7→ XH from smooth functions
on M to Hamiltonian vector fields on M is by definition surjective, and its kernel consists
of locally constant functions on M . In particular, adding a constant to a function does not
change its Hamiltonian vector field. It will often be natural to add in an extra constraint to
remove this ambiguity.

Definition 8.17. Given a closed symplectic manifold (M2n, ω), the mean value of a
Hamiltonian H : M → R is

〈H〉 :=

∫
M
Hω∧n∫

M
ω∧n

.

Definition 8.18. If (M,ω) is a closed symplectic manifold, an autonomous Hamiltonian
H : M → I is normalized if 〈H〉 = 0. Similarly, a time-dependent Hamiltonian H :
M × I → R is normalized if 〈Ht〉 = 0 for each t ∈ I.

Proposition 8.19. If (M,ω) is a closed symplectic manifold with H1(M ; R) = 0, then
we have Ham(M,ω) = Symp0(M,ω).

Proof. Given φ ∈ Symp0(M,ω), we can find a family of symplectomorphisms {φt}t∈[0,1]

with φ0 = 1 and φ1 = φ. Let Vt = ∂tφt be the corresponding family of vector fields, i.e. for
each p ∈M we have Vt|φt(p) = ∂t(φt(p)). Since φ∗tω = ω for all t, we have LVt(ω) = 0, where
LVt(ω) denotes the Lie derivative of the two-form ωt in the direction of the vector field Vt.
Using Cartan’s formula for the Lie derivative, we have

0 = LVt(ω) = dιVtω + ιVtdω = dιVtω.

This shows that ιVtω is a closed one-form on M , and therefore it is exact since H1(M ; R) = 0.
There is then, for each t ∈ I, a unique normalized Hamiltonian Ht : M → R such that
Vt = XHt . We therefore have φt = Flt{Ht}, and in particular φ = φ1 ∈ Ham(M,ω). �

Exercise 8.20. Verify in the above proof that H : M × I → R is smooth.

A vector field V on M such that ιV ω is closed is called a symplectic vector field.
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8.6. Universal covers and flux

For some purposes, we will need to consider not just Ham(M,ω) or Symp(M,ω) but
also their universal covers. As usual, one can realize the universal cover S̃ of a topological
space S as the space of all paths which start at a fixed basepoint, modulo homotopies rel
endpoints. The projection map S̃ → S then corresponds to the endpoint of the path.

Definition 8.21. Let S̃ymp0(M,ω) denote the space of all paths {φt}t∈[0,1] of sym-
plectomorphisms such that φ0 = 1, modulo homotopies between paths fixed at t = 0 and
t = 1.

Similarly, H̃am(M,ω) is the space of all paths {φt}t∈[0,1] of Hamiltonian diffeomorphisms
such that φ0 = 1, modulo homotopies rel endpoints.

We will often write e.g. {φt} ∈ S̃ymp0(M,ω) or {φt} ∈ H̃am(M,ω) with the implicit
understanding that {φt} is defined up to homotopy rel endpoints. We will sometimes
write [{φt}] if we wish to emphasize that we are considering an equivalence class of paths.
Sometimes for brevity we will also denote an element of H̃am(M,ω) simply by φ, when no
confusion should arise.

Now consider some [{φt}t∈[0,1]] ∈ S̃ymp0(M,ω). If H1(M ; R) 6= 0, then Proposition 8.19
does not apply, but we can instead introduce a measure of how far the path is from being
Hamiltonian:

Definition 8.22. We define the flux of a path {φt}t∈[0,1] of symplectomorphisms by

Flux({φt}) :=

∫ 1

0

[ιVtω]dt ∈ H1(M ; R),

where Vt = ∂tφt is the associated symplectic vector field and [ιVtω] ∈ H1(M ; R) is the
corresponding de Rham cohomology class.

It turns out that the flux in unaffected by homotopies rel endpoints, and therefore it actually
descends to a homomorphism

Flux : S̃ymp0(M,ω)→ H1(M ; R).

Note that Flux({φt}) = 0 if {φt} ∈ H̃am(M,ω), since in that case the corresponding vector
field Vt = ∂tφt is exact for t ∈ [0, 1]. In fact, for {φt} ∈ S̃ymp0(M,ω), one can show that
Flux({φt}) = 0 if and only if {φt} is homotopic rel endpoints to a path in Ham(M,ω).

It is easy to see that Flux : S̃ymp0(M,ω)→ H1(M ; R) is surjective, since any class in
H1(M ; R) corresponds to a symplectic vector field on M and its flow generates an element
of S̃ymp0(M,ω). By the above discussion, the kernel of Flux is identified with H̃am(M,ω).
It is natural to ask whether Flux descends to a map defined on Symp0(M,ω) itself. The
obstruction comes from the flux of loops in Symp0(M,ω) based at 1.

Definition 8.23. Let Γω ⊂ H1(M ; R) denote the set of all fluxes of paths {φt} ∈
Symp0(M,ω) with φ0 = φ1 = 1.

Then we get a well-defined homomorphism Flux : Symp0(M,ω)→ H1(M ; R)/Γω. The
following theorem of Ono resolved an old question known as the “flux conjecture”:

Theorem 8.24 ([Ono]). For a closed symplectic manifold (M,ω), Γω ⊂ H1(M ; R) is a
discrete subgroup, and we have

Symp0(M,ω)/Ham(M,ω) ∼= H1(M,ω)/Γω.
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The Hofer metric and displacement energy

Having discussed Ham(M,ω) as both a group and a topological space, we now explain
its natural bi-invariant metric, the existence of which is a “wonder” of symplectic geometry.

9.1. The Hofer metric and its basic properties

For a Hamiltonian H : M → R, put

||H|| := max
M

H −min
M

H.

Note that ||H|| is unaffected if we add a constant to H. For a path {φt} in Ham(M,ω), we
define its length by

len({φt}) :=

∫ 1

0

||Ht||dt,

where ∂tφt = XHt .

Definition 9.1 (The Hofer metric). We φ, ψ ∈ Ham(M,ω),

dHof(φ, ψ) := inf{len({γt}t∈[0,1] | γt ∈ Ham(M,ω), γ0 = φ, γ1 = ψ},

i.e. the infimal length of a path in Ham(M,ω) joining φ and ψ.

Since 1 ∈ Ham(M,ω) is the canonical choice of basepoint, we can think of the Hofer
metric as giving a measure of the “size” of any Hamiltonian diffeomorphism:

Definition 9.2 (The Hofer norm). For φ ∈ Ham(M,ω), put ||φ||Hof := dHof(φ,1).

Lemma 9.3. The Hofer metric satisfies the following basic properties for any φ, ψ, θ inHam(M,ω) :

(1) (nonnegativity) dHof(φ, ψ) ≥ 0 and dHof(φ, φ) = 0
(2) (symmetry) dHof(φ, ψ) = dHof(ψ, φ)
(3) (triangle inequality) dHof(φ, ψ) ≤ dHof(φ, θ) + dHof(θ, ψ)
(4) (bi-invariance) dHof(φ, ψ) = dHof(θ ◦ φ, θ ◦ ψ) = dHof(φ ◦ θ, ψ ◦ θ).

Exercise 9.4. Check the above properties.

The first three properties are equivalent to saying that dHof is a pseudometric. In fact,
dHof is a genuine metric, but compared to the other properties this is rather nontrivial and
requires some machinery to prove:

Theorem 9.5. [Hof, Pol, LM] For any closed symplectic manifold (M,ω), the Hofer
metric is nondegenerate, i.e. we have d(φ, ψ) > 0 if φ 6= ψ.

Remark 9.6. By bi-invariance, nondegeneracy of dHof(−,−) follows from nondegeneracy
of || − ||Hof , i.e. it suffices to prove that ||φ||Hof = 0 only if φ = 1.
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We will discuss an approach to the proof of Theorem 9.5 in the coming lectures. Following
[PR], we will also use this as an excuse to introduce several other tools and abstractions.

Theorem 9.5 is quite fortunate, since it turns out that if dHof were not nondegenerate
then it would be completely trivial:

Exercise 9.7. Let G be any simple group, and let d be a pseudometric on G which is
bi-invariant, i.e. such that d(gg1, gg2) = d(g1g, g2g) = d(g1, g2) for any g, g1, g2 ∈ G. Then
either d is nondegenerate, or else d is identically zero.

Hint: show that {h ∈ G | d(1, h) = 0} is a normal subgroup of G, and then invoke
simplicity.

Exercise 9.8. Convince yourself that the topology on Ham(M,ω) induced by the Hofer
metric is strictly weaker than the C∞ topology.

9.2. Displacement energy

The Hofer metric gives a natural way of measuring quantifying various other geometric
aspects of a symplectic manifold. One particularly relevant notion is that of displacement
energy:

Definition 9.9. Let (M,ω) be a symplectic manifold and let A ⊂M be any subset. The
displacement energy of A is

eHof(A) := inf{||φ||Hof | φ ∈ Ham(M,ω), φ(A) ∩A = ∅}.

We say that A is displaceable if eHof(A) <∞, i.e. there exists φ ∈ Ham(M,ω) such that
φ(A) ∩A = ∅.

Proposition 9.10. For any nonempty open subset A ⊂M , we have eHof(A) > 0.

Taking Theorem 9.5 for granted for the moment, we show explain how to deduce the
above proposition. We start with an elementary lemma. For φ, ψ ∈ Ham(M,ω) we denote
their commutator by [φ, ψ] := φψφ−1ψ−1.

Lemma 9.11. For any φ, ψ ∈ Ham(M,ω), we have ||[φ, ψ]||Hof ≤ 2||ψ||Hof .

Proof. We have

||φψφ−1ψ−1||Hof = dHof(φψφ
−1ψ−1,1)

= dHof(φψφ
−1, ψ)

≤ dHof(φψφ
−1,1) + dHof(1, ψ)

= 2||ψ||Hof .

�

Proof of Proposition 9.10, assuming Theorem 9.5. We might as well assume
that the nonempty open subset A is displaceable, since otherwise there is nothing to
prove. Suppose that θ displaces A. Evidently we have ||θ||Hof > 0, but this does not prove
eHof(A) > 0 since the definition of the latter involves an infimum. We seek to find a lower
bound for ||θ||Hof which is independent of θ, whence the infimum defining eHof(A) will be
positive.

Let φ, ψ ∈ Ham(M,ω) be Hamiltonian diffeomorphisms supported in A, and such that
φ ◦ ψ 6= ψ ◦ φ (see Exercise 9.12). Then by nondegeneracy of the Hofer norm we have
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||[φ, ψ]||Hof > 0. Note that θψ−1θ−1 is supported in θ(A), which is disjoint from A, and
hence θψ−1θ−1 commutes with φ. We then have

[φ, [ψ, θ]] = φ(ψθψ−1θ−1)φ−1(θψθ−1ψ−1)

= φψφ−1ψ−1

= [φ, ψ],

and hence by Lemma 9.11 we have

||[φ, ψ]||Hof = ||[φ, [ψ, θ]]||Hof

≤ 2||[ψ, θ]||Hof

≤ 4||θ||Hof ,

and therefore eHof(A) ≥ 1
4 ||[φ, ψ]||Hof > 0. �

Exercise 9.12. Let A be a nonempty open subset of a symplectic manifold (M,ω). Prove
that there exist φ, ψ ∈ Ham(M,ω) such that

• φ and ψ are supported in A, i.e. φ(p) = ψ(p) = p for any p ∈M \A
• φ and ψ do not commute, i.e. φ ◦ ψ 6= ψ ◦ φ as elements of Ham(M,ω).

Some possible hints: Recall that by Darboux’s theorem there is an open subset of A which
is symplectomorphic to a ball in Euclidean space with its standard symplectic structure. Note
that we can cut off the support of a Hamiltonian diffeomorphism by cutting off the generating
Hamiltonians. Recall that in dimension two symplectomorphisms are just area-preserving
diffeomorphisms.



LECTURE 10

Ham as an infinite-dimensional Lie group

In this lecture we would like to further develop the idea that Ham(M,ω) is an infinite-
dimensional Lie group, where the group multiplication is given by composition and the
topology is the C∞ topology (see Definition 8.14). Our motivation is to put the Hofer
metric in greater context and to compare it with related constructions for finite-dimensional
Lie groups. Since this lecture is mostly intended to build intuition, we will not give a
formal definition of “infinite-dimensional Lie group”, although we will assume familiarity will
finite-dimensional Lie groups.

10.1. Finsler metrics

Definition 10.1. A Finsler metric on a finite-dimensional manifold M is a choice
of asymmetric norm on each tangent space. More precisely, it is a continuous function
µ : TM → R≥0, which is smooth away from the zero section, such that for all p ∈ M and
v, w ∈ TpM we have:

• (subadditivity) µ(v + w) ≤ µ(v) + µ(w)
• (positive homogeneity) µ(λv) = λµ(v) for all λ ∈ R≥0

• (positive definiteness) µ(v) > 0 if v is nonzero.

Given a Finsler metric µ on M , we define the length of a curve γ : [a, b]→M by

lenµ(γ) :=

∫ b

a

µ(γ̇(t))dt,

and we define the distance between two points p, q ∈M by

dµ(p, q) := inf{len(γ) | γ : I →M, γ(0) = p, γ(1) = q}.

One can check that dµ satisfies the axioms of a metric except for possibly symmetry, and it
is also symmetric if µ is fully homogeneous, i.e. µ(λv) = λµ(v) for all (possibly negative)
λ ∈ R.

If G is a finite-dimensional Lie group, recall that its Lie algebra g is the space of
vector fields on G which are invariant under left multiplication by elements of G. Since
a left-invariant vector field is determined by its value at the identity element e ∈ G, we
have an identification g ≈ TeG. The Lie bracket on g is defined using the Lie bracket (i.e.
[V,W ]f = V (W (f)) −W (V (f))) of the corresponding left-invariant vector fields. Recall
that G acts on instead by conjugation, and by linearizing at the identity element we get the
adjoint action

Ad : G→ End(g).

Note that any norm ||− || on TeG induces a left-invariant Finsler metric on G by putting
µ(v) = µ(dLg−1(v)) for any g ∈ G and v ∈ TgG (here Lg : G→ G denotes left multiplication
by g). If || − || is in addition Ad-invariant, i.e. ||v|| = ||Adg(v)|| for any v ∈ g and g ∈ G,
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then this prescription gives a Finsler metric which is also right invariant, whence the induced
metric dµ on G is bi-invariant.

It turns out that having a bi-invariant Finsler metric on a finite dimensional Lie group
is quite restrictive.

Proposition 10.2. If G is a simple finite-dimensional Lie group with a bi-invariant
Finsler metric, then G is compact.

In particular, the existence of the Hofer metric on Ham(M,ω) should be viewed as a purely
infinite-dimensional phenomenon.

10.2. The infinite-dimensional setting

Let M be a closed smooth manifold. We view Diff(M) as an infinite-dimensional Lie
group, with multiplication given by composition and topology given by the C∞ topology.
The Lie algebra is T1Diff(M), which is identified with the vector space of smooth vector
fields on M , and with Lie bracket given by the usual Lie bracket of vector fields.

Exercise 10.3. For any differential k-form α and vector fields A,B, we have

[LA, ιB ]α := LAιBα− ιBLAα = ι[A,B]α.

Hint: the Lie derivative satisfies the Leibiz rule

LA(α(B1, . . . , Bk)) = (LAα)(B1, . . . , Bk) + α(LAB1, B2, . . . , Bk) + · · ·+ α(B1, . . . , Bk−1,LABk)

for vector fields A,B1, . . . , Bk. Recall that LABi = [A,Bi].

Suppose that A and B are symplectic vector fields, i.e. d(ιAω) = d(ιBω) = 0. Then
using Exercise 10.3 we have

ι[A,B]ω = [LA, ιB ]ω

= dιAιBω + ιAdιBω − ιBdιAω − ιBιAdω
= d(ω(B,A)).

This shows that [A,B] = −Xω(A,B)
1 is a Hamiltonian vector field.

In particular, if A = XF and B = XG are Hamiltonian vector fields, then we have

[XF , XG] = −{F,G},(10.1)

where {F,G} := ω(XF , XG) is the Poisson bracket of F and G.

Exercise 10.4. For any two Hamiltonians F,G : M → R, their Poisson bracket {F,G}
is normalized.

Hint: show that we have

dF ∧ dG ∧ ω∧(n−1) = − 1
n{F,G}ω

∧n.

In other words, given a closed symplectic manifold (M,ω), the Lie algebra of Ham(M,ω)
is the space H of normalized Hamiltonian functions H : M → R, and the Lie bracket is given
by the Poisson bracket.

Given φ ∈ Ham(M,ω) and H ∈ H, one can check that the adjoint action is given by

Adφ(H) = H ◦ φ−1 ∈ H.

1Note the sign flip here! This is rather unpleasant but unavoidable based on our conventions.
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By the above discussion, we can pick any norm || − ||′ on H such that ||H||′ = ||H ◦ φ||′
for all φ ∈ Ham(M,ω), and this will induce bi-invariant pseudometric on Ham(M,ω). For
example, we could take the norm

||H||Lp :=

(∫
M

|H|pω∧n
)1/p

for p ∈ [1,∞). in particular, in the case of Ham explain that there are many viable
possibilities, e.g. any Lp metric would work. As it turns out, any such choice will either will
result in something which is either degenerate or equivalent to the Hofer metric:

Theorem 10.5. [BO] Let || − ||′ be a norm on H which is invariant under the adjoint
action of Ham(M,ω) and which is continuous with respect to the C∞ topology on Ham(M,ω).
Then either the induced bi-invariant pseudometric on Ham(M,ω) is trivial, or else || − ||′ is
equivalent to the unform norm.

Recall that two norms || − ||1 and || − ||2 on a vector space V are equivalent if there exist
positive constants C1, C2 such that we have C1||v||1 ≤ ||v||2 ≤ C2||v||1 for all v ∈ V .



LECTURE 11

The action spectrum

11.1. The action of a contractible periodic Hamiltonian orbit

Let (M,ω) be a closed symplectic manifold. We begin by defining the action spectrum
of a time-dependent Hamiltonian H : M → R, which turns out to depend only on the flow
as an element of H̃am(M,ω). We then define spectral invariants, which input elements of
H̃am(M,ω) and take values in the associated action spectrum. The existence of certain
subadditive spectral invariants, which we will establish later using filtered Floer homology,
will play a key role in our proof that the Hofer metric is nondegenerate.

Recall that elements of H̃am(M,ω) are paths in Ham(M,ω) which begin at 1, modulo
homotopies rel endpoints. This inherits a group structure via {φt} · {ψt} := {φt ◦ ψt} for
{φt}, {ψt} ∈ H̃am(M,ω).

Exercise 11.1. Show that the group multiplication is equivalently given by concatenation.
More precisely, {φt}·{φt} is homotopic rel endpoints to the path {φ2t} for t ∈ [0, 1/2], followed
by {φ1 ◦ φ2t−1} for t ∈ [1/2, 1].

Given {φt} ∈ H̃am(M,ω), denote the fixed points of φ1 ∈ Ham(M,ω) by

Fix(φ1) := {p ∈M | φ1(p) = p}.
Note that for p ∈ Fix(φ1), we get an associated closed loop γp : [0, 1]→M based at p via
γp(t) = φt(p).

Definition 11.2. Given any contractible loop γ : S1 →M , a capping disk is a smooth
map D : D2 →M such that D|∂D2 = γ.

Definition 11.3. Let H : M×I → R be a time-dependent Hamiltonian, with Hamiltonian
flow {φt} ∈ H̃am(M,ω). Suppose that p ∈ Fix(φ1), and assume that the loop γp : [0, 1]→M
is contractible. Let D be a capping disk for γp. The action of the pair (p,D) is

AH(p,D) := −
∫

D2

D∗ω +

∫ 1

0

H(φt(p), t)dt.(11.1)

If D and D′ are two different capping disks for γp, observe that we have

AF (p,D)−AF (p,D′) =

∫
S2

u∗ω,

where u : S2 →M is given by gluing together D′ to D along their common boundary. More
preicsely, defining the integral

∫
u∗ω requires a choice of orientation on S2, and we use the

orientation induced by that of D′ and the opposite orientation on D.

Definition 11.4. The group of periods of (M,ω) is the subgroup of R given by

Lω :=

{∫
S2

u∗ω | u : S2 →M

}
.
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Therefore we can also say that, if γy is contractible, the action AH(y) is well-defined in
R/Lω.

Example 11.5. Let ωstd be a symplectic form on S2 such that
∫
S2 ωstd = 1, and let

πi : S2 × S2 → S2 be projection onto the ith factor for i = 1, 2. If we endow S2 × S2 with
the symplectic form aπ∗1ωstd + bπ∗2ωstd for some a, b ∈ R>0, then Lω is the subgroup of R
generated by a, b.

Proposition 11.6. Let (M,ω) be a closed symplectic manifold, and suppose that F,G :
M × I → R are two time-dependent Hamiltonians which both generate the same element
of H̃am(M,ω). Suppose that y ∈ Fix(Fl1F ) = Fix(Fl1G), and the associated loops in M are
contractible. Then we have AF (y) = AG(y) mod Lω.

Note that F,G generating the same element of H̃am(M,ω) means that Fl1F = Fl1G, and then
{FltF } is homotopic to {FltG} rel endpoints. In particular, the loops {FltF (y)} and {FltG}
are homotopic, so one is contractible if and only if the other is.

11.2. Two-parameter families of Hamiltonian diffeomorphisms

Before proving Proposition 11.6, we will need a preliminary lemma.

Lemma 11.7. [Ban] Let M be a smooth manifold, and let {φs,t ∈ Diff(M)} be a 2-
parameter family of diffeomorphisms. Let Xs,t and Ys,t be the associated 2-parameter families
of vector fields on M satisfying

Xs,t(φs,t)(p) = ∂tφs,t(p)

Ys,t(φs,t)(p) = ∂sφs,t(p)

for all p ∈M . Then we have

∂sXs,t − ∂tYs,t = [Xs,t, Ys,t].

Proof. Endow R2 with coordinates (s, t), and let π : M → R2 → R2 denote the
projection to R2. We can view any (s, t)-dependent vector field on M as a single vector
field on M × R2 which is tangent to each fiber M × {(s0, t0)} of π. Let X̃ denote the vector
field on M × R2 given by X̃ = Xs,t + ∂t. Similarly, put Ỹ := Ys,t + ∂s as a vector field on
M × R2 which is tangent to the fibers of π. Observe that there is a foliation of M × R2 by
leaves of the form {φs,t(p) | (s, t) ∈ R2} for p ∈M . Moreover, X̃ and Ỹ are tangent to these
leaves, and so by the Frobenius integrability theorem we have that [X̃, Ỹ ] is also tangent to
these leaves. Not that we have dπ([X̃, Ỹ ]) = [dπ(X̃), dπ(Ỹ )] = [∂s, ∂t] = 0, and hence [X̃, Ỹ ]
is also tangent to the fibers of π. Since the leaves of the foliation intersect the fibers of π
transversely, we conclude that [X̃, Ỹ ] = 0, and therefore we have

0 = [X̃, Ỹ ] = [Xs,t, Ys,t] + [∂t, Ys,t] + [Xs,t, ∂s] + [∂s, ∂t]

= [Xs,t, Ys,t] + ∂tYs,t − ∂sXs,t,

which immediately gives the desired formula. �

Corollary 11.8. Let (M,ω) be a closed symplectic manifold, and let φs,t ∈ Ham(M,ω)
be a 2-parameter family of Hamiltonian diffeomorphisms. Let As,t, Bs,t : M → R be the
corresponding 2-parameter families of normalized Hamiltonians such that we have

∂tφs,t(p) = XAs,t(φs,t(p))

∂sφs,t(p) = XBs,t(ψs,t(p))
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for all p ∈M . Then we have

∂sAs,t − ∂tBs,t = −{As,t, Bs,t}.

Proof. Using Lemma 11.7 and (10.1), we have

∂sXAs,t − ∂tXBs,t = [XAs,t , XBs,t ] = −X{As,t,Bs,t},

and hence

−d{As,t, Bs,t} = ω(∂sXAs,t ,−)− ω(∂tXBs,t ,−)

= ∂sdAs,t − ∂tdBs,t,

and hence ∂sAs,t − ∂tBs,t agrees with −{As,t, Bs,t} up to a constant Cs,t, which can be
readily seen to be zero using Exercise 10.4. �

11.3. Invariance of action under homotopies

Proof of Proposition 11.6. Put ψ := Fl1F = Fl1G ∈ Ham(M,ω). Since F and G

generate the same element of H̃am(M,ω), we can find a 2-parameter family {φs,t}s,t∈[0,1] in
Ham(M,ω) such that

• φ0,t = FltF and φ1,t = FltG
• φs,0 = 1 for all s ∈ [0, 1]
• φs,1 = ψ for all s ∈ [0, 1].

Let y be a fixed point of ψ, and assume that the loops γ0, γ1 defined by γi(t) = φi,t are
contractible.

Suppose that D is a capping disk for γ0. Let u : [0, 1]× S1 →M be the cylinder in M
defined by u(s, t) = φs,t(y). Then we can concatenate D with u to get a capping disk D′ for
γ1. It suffices to establish

AF (y,D) = AG(y,D′).

Using (11.1), we have

AG(y,D′)−AF (y,D) = −
∫

[0,1]×S1

u∗ω +

∫ 1

0

G(γ1(t), t)dt−
∫ 1

0

F (γ0(t), t)dt.(11.2)

As in Corollary 11.8, let As,t, Bs,t : M → R be 2-parameter families of normalized
Hamiltonian vector fields such that

∂tφs,t(p) = XAs,t(φs,t(p))

∂sφs,t(p) = XBs,t(φs,t(p))

for all p ∈M , so that we have

∂sAs,t − ∂tBs,t = {As,t, Bs,t}.

Note that we have

• A0,t = Ft and A1,t = Gt
• Bs,0 = Bs,1 = 0.
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We then have

−
∫

[0,1]×S1

u∗ω =

∫ 1

0

∫ 1

0

ω(∂su, ∂tu)dsdt

= −
∫ 1

0

∫ 1

0

ω(XAs,t , XBs,t) ◦ u dsdt

= −
∫ 1

0

∫ 1

0

{As,t, Bs,t} ◦ u dsdt

=

∫ 1

0

∫ 1

0

(∂sAs,t − ∂tBs,t) ◦ u dsdt

=

∫ 1

0

∫ 1

0

(∂s(As,t ◦ u)− dAs,t ◦ ∂su− ∂t(Bs,t ◦ u) + dBs,t ◦ ∂tu) dsdt

=

∫ 1

0

∫ 1

0

(∂s(As,t ◦ u)− ∂t(Bs,t ◦ u)) dsdt− 2

∫ 1

0

∫ 1

0

{As,t, Bs,t} ◦ u dsdt,

and therefore ∫
[0,1]×S1

u∗ω =

∫ 1

0

∫ 1

0

(∂s(As,t ◦ u)− ∂t(Bs,t ◦ u)) dsdt

=

∫ 1

0

(A1,t −A0,t) ◦ u dt

=

∫ 1

0

G(γ1(t), t)−
∫ 1

0

F (γ0(t), t),

which combined with (11.2) readily gives the desired result. �

11.4. The action spectrum

Given φ = [{φt}] ∈ H̃am(M,ω) and y ∈ Fix(φ1) such that the corresponding loop γy in
M is contractible, we put Aφ(y,D) := AF (y,D), where F : M × I → R is any normalized
time-dependent Hamiltonian such that [{FltF }] = [{φt}] ∈ H̃am(M,ω), and D is a choice of
capping disk of γy.

Definition 11.9. Given φ = [{φt}] ∈ H̃am(M,ω), its action spectrum spec(φ) ⊂ R is
the set of all actions Aφ(y,D), where y varies fixed points of φ1 such that γy is contractible,
and D is a capping disk of γy.

A particularly nice situation is when φ1 ∈ Ham(M,ω) is nondegenerate, meaning that
for each y ∈ Fix(φ1), the linear map dφ1|y : TyM → TyM does not have 1 as an eigenvalue.
In this case, the fixed points of φ1 are isolated, and hence there are only finitely many
(assuming M is compact). We will say that [{φt}] ∈ H̃am(M,ω) is nondegenerate if φ1 is.
In this case, spec([{φt}]) is a finitely generated module over Z[Lω].

Exercise 11.10. Show that a Hamiltonian diffeomorphism φ ∈ Ham(M,ω) is nonde-
generate if and only if its graph Gr(φ) := {(x, φ(x) | x ∈M} ⊂M ×M is transverse to the
diagonal ∆ := {(x, x) | x ∈M} ⊂M ×M . Conclude that the fixed points of φ are isolated.

Remark 11.11. Suppose that M is symplectically aspherical, i.e.
∫
S2 u

∗ω = 0 for
all u : S2 →M (e.g. this holds whenever π2(M) = 0). Then AF (y,D) is in fact independent
of the choice of capping disk D.
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Subadditive spectral invariants

12.1. The key ingredient

We begin with a definition:

Definition 12.1. Let (M,ω) be a closed symplectic manifold. A subadditive spectral
invariant is a function c : H̃am(M,ω)→ R satisfying the following axioms for any φ, ψ ∈
H̃am(M,ω):

(1) (conjugation invariance) c(φψφ−1) = c(ψ)
(2) (subadditivity) c(φψ) ≤ c(φ) + c(ψ)

(3) (stability)
∫ 1

0
min(Ft − Gt)dt ≤ c(φ) − c(ψ) ≤

∫ 1

0
max(Ft − Gt)dt, where F,G :

M × I → R are normalized Hamiltonians generating φ, ψ respectively
(4) (spectrality) c(φ) ∈ spec(φ) if φ is nondegenerate.

The two conditions can be viewed as compatibility with the group structure on H̃am(M,ω).
The third condition is akin to a continuity property for c. The last condition, which connects
with the previous lecture, ties c with dynamical properties of φ and makes the exists of c
rather nontrivial to establish.

We following theorem will be our key nontrivial input from Floer theory:

Theorem 12.2. Every closed symplectic manifold (M,ω) admits a subadditive spectral
invariant c : H̃am(M,ω)→ R which moreover satisfies c(1) = 0.

For the next several lectures, we will take Theorem 12.2 as a black box and use it to
deduce various important applications. Along the way, we will develop some formalism which
is independently interesting and useful.

12.2. Nondegeneracy of the Hofer metric

Given any subadditive spectral invariant c : H̃am(M,ω), we make the following further
definitions:

Definition 12.3. Let qc : H̃am(M,ω)→ R be defined by qc(φ) := c(φ) + c(φ−1).

Note qc(φ) is always nonnegative, since using subadditivity we have

c(1) = c(1 · 1) ≤ c(1) + c(1),

and hence

0 ≤ c(1) = c(φ · φ−1) ≤ c(φ) + c(φ−1) = q(φ).

We will view qc(φ) as a measure of the “size” of φ which is a kind of algebraic analogue of
the Hofer norm ||φ||Hof .
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Definition 12.4. For an open subset U ⊂M , we define the spectral displacement
energy by

ec(U) := inf{qc([{φt}]) | [{φt}] ∈ H̃am(Mω), φ1(U) ∩ U = ∅}.

Note that ec(U) is defined just like the usual displacement energy eHof(U), but using qc in
place of the Hofer norm.

Our next order of business is to establish the following three results:

Lemma A. For any displaceable open subset U ⊂M , we have ec(U) ≤ 2c(1) + eHof(U).

Lemma B. For any open and displacement subset U ⊂M and for any φ ∈ H̃amU (M,ω)
we have qc(φ) ≤ 2ec(U).

Here H̃amU (M,ω) denotes the subgroup of H̃am(M,ω) given by Hamiltonian isotopies
which are generated by a (not necessarily normalized) Hamiltonian H : M × I → R such
that Ht is supported in U for all t ∈ [0, 1]. Of course for any Hamiltonian supported in U
we can always add a constant in order to make it normalized (i.e. have its integral over M
equal to zero), but the result will generally no longer be supported in U .

Lemma C. For any φ = [{φt}] ∈ H̃am(M,ω) such that φ1 6= 1 ∈ Ham(M,ω), we have
qc(φ) > 0.

Assuming these lemmas, we can easily prove nondegeneracy of the Hofer norm, as well
as:

Theorem 12.5. For any nonempty open subset U ⊂M , we have eHof(U) > 0.

Remark 12.6. Note that this is exactly the same as Proposition 9.10, which we previously
proved assuming nondegeneracy of the Hofer norm. We now slightly shuffle the logic and
instead prove Theorem 12.5 assuming Theorem 12.2 as well as Lemmas A,B,C, and we then
use Theorem 12.5 to easily deduce nondegeneracy of the Hofer norm below.

Proof of Theorem 12.5. We can assume without loss of generality that U is dis-
placeable. Take any φ = [{φt}] ∈ H̃amU (M,ω) such that φ1 6= 1. Let c : H̃am(M,ω) be a
subadditive spectral invariant with c(1) = 0. Combining Lemmas A,B,C, we have

0 < qc(φ) ≤ 2ec(U) ≤ 4c(1) + 2eHof(U) = 2eHof(U).

�

Proof of Theorem 9.5. Observe that any φ ∈ Ham(M,ω) displaces some open subset
U ⊂M , whence by Theorem 12.5 and the definition of displacement energy we have

0 < eHof(U) ≤ ||φ||Hof .

�

12.3. Upper bound on the spectral displacement energy

Here we prove Lemma A. Firstly, given φ = [{φt}] ∈ H̃am(M,ω), let us define

d̃Hof(1, φ) := inf{len({ψt}) | [{ψt}] = [{φt}]}.
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Note that this is just defined like dHof(1, φ1), except that we only infimize only paths in
Ham(M,ω) from 1 to φ1 which are homotopy rel endpoints to the path {φt}. More generally,
for any φ, ψ ∈ H̃am(M,ω) we put

d̃Hof(φ, ψ) := d̃Hof(1, φ
−1ψ).

This defines a bi-invariant pseudonorm on H̃am(M,ω).

Remark 12.7. As far as we are aware, it is unknown whether d̃Hof is nondegenerate
for all closed symplectic manifolds (M,ω). Note that this does not follow directly from
nondegeneracy of dHof , as in particular we would need to establish d̃(1, φ) > 0 when φ is a
nontrivial loop in Ham(M,ω) based at 1.

Lemma 12.8. For any φ ∈ H̃am(M,ω) we have

qc(φ) ≤ 2c(1) + d̃Hof(1, φ).

Let F : M×I → R be a normalized time dependent Hamiltonian such that [{FltF }] = [{φt}] ∈
H̃am(M,ω). By the stability axiom, with ψ = 1 and G ≡ 0, we have

c(φ)− c(1) ≤
∫ 1

0

max(Ft)dt.

Recall that φ−1 is generated by {−Ft ◦ φt}, and hence we similarly have

c(φ−1)− c(1) ≤
∫ 1

0

max(−Ft ◦ φt)dt = −
∫ 1

0

min(Ft)dt.

Adding these gives

q(φ) = c(φ) + c(φ−1) ≤ 2c(1) +

∫ 1

0

(max(Ft)−min(Ft)) dt = 2c(1) +

∫ 1

0

||Ft||dt,

and hence q(φ) ≤ 2c(1) + d̃Hof(1, [{φt}]).

Proof of Lemma A. For any φ = [{φt}] ∈ H̃am(M,ω) such that φ1(U) ∩ U = ∅, we
have by the previous lemma and the definition of ec(U)

ec(U) ≤ qc(φ) ≤ 2c(1) + d̃Hof(1, φ) ≤ 2c(1) + dHof(1, φ1).

Since φ1 ∈ Ham(M,ω) is an arbitrary Hamiltonian diffeomorphism which displaces U , we
have by the definition of eHof(U)

ec(U) ≤ 2c(1) + eHof(U).

�



LECTURE 13

The Calabi homomorphism

13.1. Definition and invariance

We next seek to prove Lemma B. Before doing so, let us introduce the Calabi homomor-
phism.

Definition 13.1. Let (M,ω) be a noncompact symplectic manifold, let H : M × I → R

be a time-dependent Hamiltonian, and let φ ∈ H̃am(M,ω) denote its flow. We define the
Calabi invariant by

Cal(H) :=

∫ t=1

t=0

(∫
M

Htω
∧n
)
dt ∈ R.

Proposition 13.2. Cal(H) depends only on φ ∈ H̃am(M,ω) both not on H. Namely,
if F,G : M × I → R both generate the same element of H̃am(M,ω), then we have Cal(F ) =

Cal(G). Moreover, the induced map Cal : H̃am(M,ω)→ R is a group homomorphism.

Remark 13.3. Note that there is no analogue of Cal when (M,ω) is a symplectic
manifold, since in this case after normalizing we would just get Cal(H) = 0.

Proof of Proposition 13.2. Let F,G : M × I → R be time-dependent Hamiltonians
with flows {φt}, {ψt} respectively, such that [{φt}] = [{ψt}] ∈ H̃am(M,ω). As in Corol-
lary 11.8, let γs,t be a 2-parameter family in Ham(M,ω) such that γ0,t = φt and γ1,t = ψt,
and γs,i is s-independent for i = 0, 1.

and let As,t, Bs,t be 2-parameter families of compactly supported functions M → R such
that we have

∂tγs,t(p) = XAs,t(γs,t(p))

∂sγs,t(p) = XBs,t(γs,t(p))

for all p ∈M (c.f. Banyaga’s theorem). According to Corollary 11.8, we have

∂sAs,t − ∂tBs,t = −{As,t, Bs,t}.
Note that we have A0,t = F , A1,t = G, and Bs,0 = Bs,1 = 0.

It suffices show that the quantity∫ 1

0

∫
M

As,tω
∧ndt ∈ R

is independent of s. Using Exercise 10.4, we compute

∂s

∫ 1

0

∫
M

As,tω
∧ndt =

∫ 1

0

∫
M

(∂tBs,t − {As,t, Bs,t})dt

= n

∫ 1

0

∫
M

dAs,t ∧ dGs,t ∧ ω∧(n−1)dt,

49
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and the latter vanishes since dAs,t ∧ dGs,t ∧ ω∧(n−1) is an exact 2n-form on M .
�

Now suppose that (M,ω) is closed, and let U ⊂M be an open subset. If H : M × I → R
is supported in U , we can view it as a time-dependent Hamiltonian on the noncompact
symplectic manifold (U, ω|U ), and as such we denote its Calabi invariant by CalU (H). We
thus get a well-defined homomorphism

CalU : H̃amU (M,ω)→ R.

13.2. A lemma and the proof of Lemma B

As before, let (M,ω) be a closed symplectic manifold and let c : H̃am(M,ω)→ R be a
subadditive spectral invariant.

Lemma 13.4. Let U ⊂M be an open subset which is displaceable, and let F,G : M×I →
R be time-dependent Hamiltonians such that

• F is supported in U , and thus generates a flow {φt} ∈ H̃amU (M,ω)

• G generates a flow {ψt} ∈ H̃am(M,ω) such that ψ1(U) ∩ U = ∅.
Then we have

c(ψφ) = c(ψ)−
∫ 1

0

〈Ft〉dt.

Here for Q : M → R we put 〈Q〉 =
∫
M
Qω∧n∫

M
ω∧n

.

Proof of Lemma B. Consider any φ ∈ H̃amU (M,ω), and suppose that ψ ∈ H̃am(M,ω)
displaces U . Then by Lemma 13.4 we have

c(φ) = c(ψ−1ψφ) ≤ c(ψ−1) + c(ψφ)

= c(ψ−1) + c(ψ)− CalU (φ)∫
M
ω∧n

= q(ψ)− CalU (φ)∫
M
ω∧n

.

Combining this with the analogous bound for c(φ−1), and using the fact that CalU (φ) =
−CalU (φ−1), we have

q(φ) = c(φ) + c(φ−1) ≤ 2q(ψ),

and hence q(φ) ≤ 2ec(U). �

Proof of Lemma 13.4. We will explain the prove assuming that ψ1 is nondegener-
ate. The general case then follows by approximating a degenerate Hamiltonian flow by a
nondegenerate one and appealing to the stability axiom – see [PR, Proof of Prop. 4.3.5].

For τ ∈ [0, 1], let γτ ∈ H̃am(M,ω) be given by concatenating {ψt}t∈[0,1] with the path
{ψ1φt}t∈[0,τ ], after reparametrizing time so that result takes place over [0, 1] (rather than
[0, 1 + τ ]). We seek to compare the action spectra of ψ1 and γτ1 = ψ1φτ . Firstly, observe that
we have Fix(ψ1) = Fix(ψ1φτ ). Indeed, any p ∈ U cannot be fixed by either, since ψ1 displaces
U while φτ is supported in U . On the other hand, for p /∈ U we have ψ1φτ (p) = ψ1(p).

Now consider some p0 ∈ Fix(ψ1) = Fix(ψ1φτ ) such that the loop {ψt(p0)}t∈[0,1] in M
is contractible, and let D be a capping disk. Note that the loop {γτt (p0)}t∈[0,1] is, up to
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reparametrizing time, given by the loop {ψt(p0)}t∈[0,1] followed by a constant loop at p0.
Therefore we can also view D as a capping disk for {γτt (p0)}t∈[0,1], and for each τ ∈ [0, 1] we
have

A{γτt }t∈[0,1](p0, D) = A{ψt}t∈[0,1](p0, D) +

∫ t=τ

t=0

Ht(ψφt(p0))dt,

where H is the normalized time-dependent Hamiltonian on M which generates the isotopy
{ψφt}t∈[0,τ ]. That is, we have

∂tψ1φt(p) = XHt(ψ1φt(p))

for all p ∈M and t ∈ [0, τ ], and hence Ht = Ft ◦ ψ−1
1 (c.f. (8.1)). Since Ht = Ft − 〈Ft〉 and

Ft vanishes at φt(p0) = p0, we have

A{γτt }t∈[0,1](p0, D)−A{ψt}t∈[0,1](p0, D) = −
∫ τ

0

〈Ft〉dt,

whence

spec(γτ ) = spec(ψ)−
∫ τ

0

〈Ft〉dt.

Since ψ1 is nondegenerate, it is easy to check that ψ1φτ is as well, so by the spectrality
axiom we have

c(γτ ) ∈ spec(γτ ),

or equivalently

c(γτ ) +

∫ τ

0

〈Ft〉dt ∈ spec(ψ).

Since ψ is nondegenerate, it is easy to check that spec(ψ) ⊂ R has no interior. As c(γτ ) and∫ τ
0
〈Ft〉dt are both continuous functions of τ (convince yourself!), it follows that c(γτ )+

∫ τ
0
〈Ft〉

is independent of τ . In particular, we have

c(ψ) = c(γ0) = c(γ1) +

∫ 1

0

〈Ft〉dt = c(ψφ) +

∫ 1

0

〈Ft〉dt

�

Remark 13.5. In fact, for any (not necessarily nondegenerate) ψ ∈ H̃am(M,ω),
spec(ψ) ⊂ R has measure zero – see [Oh, Lem. 2.2].



LECTURE 14

Group pseudonorms, spectral width and the Poisson
bracket inequality

14.1. Some geometric group theory

We begin by introducing some basic formalism some geometric group theory, for an
abstract group G. In the next section we will directly apply these results in the case that
c : H̃am→ R is a subadditive spectral invariant. We mostly follow [PR, §3.5,§4.6].

Definition 14.1. A pseudo-norm on a group G is a function ν : G → [0,∞) such
that, for any g, h ∈ G, we have:

(i) (normalization) ν(e) = 0 (here e ∈ G is the unit)
(ii) (symmetry) ν(g) = ν(g−1)
(iii) (triangle inequality) ν(gh) ≤ ν(g) + ν(h).

It is a norm if moreover ν(g) > 0 for whenever g 6= e.

Exercise 14.2. Let G be a group and let c : G → R be a function such that for any
g, h ∈ G we have:

(a) (conjugation invariance) c(ghg−1) = c(g)
(b) (subadditivity) c(gh) ≤ c(g) + c(h).

Put q(g) := c(g) + c(g−1) and ν(g) :=

{
q(g) g 6= e

0 g = e.
Then ν is a pseudo-norm on G.

Remark 14.3. Note that for c as in Exercise 14.2, we have c(e) = c(gg−1) ≤ c(g) +
c(g−1) = q(g) and in particular c(e) ≤ 2c(e), whence 0 ≤ c(e). We therefore have q(g) ≥ 0
for any g ∈ G.

Lemma 14.4. For c as in Exercise 14.2, the limit σ(g) := lim
k→∞

c(gk)
k is defined for any

g ∈ G.

Proof. Put ak := kc(g−1) + c(gk). We have

0 ≤ q(gk) = c(gk) + c(g−k) ≤ ak.

Also, note that we have

ak+l ≤ (k + l)c(g−1) + c(gk) + c(gl) = ak + al.

Since the seqence {ak} is subadditive, the limit lim
k→∞

ak
k exists by Fekete’s lemma (see below).

Since ak
k = c(g−1) + c(gk)

k , it follows that the limit lim
k→∞

c(gk)
k also exists. �
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Lemma 14.5 (Fekete’s lemma). Let {an}n∈Z≥1
be a sequence of nonnegative real numbers

which is subadditive, i.e. such that ai+j ≤ ai + aj for all i, j ∈ Z≥1. Then the limit lim
k→∞

ak
k

exists and is equal to inf
k≥1

ak
k .

Proposition 14.6. Let c : G→ R be as in Exercise 14.2, and let σ : G→ R be given by
σ(g) := lim

k→∞
c(gk)
k (this is well-defined by Lemma 14.4). Then for any g, h ∈ G we have

|σ(gh)− σ(g)− σ(h)| ≤ min(q(g), q(h)).

Proof. For g, h ∈ G, observe that we have

(gh)k = (gh) · · · (gh) = (ghg−1)(g2hg−2) · · · (gkhg−k)gk = θgk

where we put θ := (ghg−1)(g2hg−2) · · · (gkhg−k). Using conjugation invariance and subaddi-
tivity, we have

c(θ) ≤ c(ghg−1) + · · ·+ c(gkhg−k) ≤ kc(h).

Similarly, we have θ−1 = (gkh−1g−k) · · · (gh−1g) and hence c(θ−1) ≤ kc(h−1). Therefore we
have

c((gh)k) ≤ c(θ) + c(gk) ≤ kc(h) + c(gk).

Note that we have 0 ≤ c(hk) + c(h−k) and hence −c(h−k) ≤ c(hk). We then have

kc(h) = kq(h)− kc(h−1) ≤ kq(h)− c(h−k)

≤ kq(h) + c(hk).

We therefore have

c((gh)k) ≤ kq(h) + c(hk) + c(gk),

i.e.

c((gh)k)

k
≤ q(h) +

c(hk)

k
+
c(gk)

k
,

and hence

σ(gh)− σ(g)− σ(h) ≤ q(h).

Swapping g and h and noting that c(hg) = c(g−1ghg) = c(gh), we also have

σ(gh)− σ(g)− σ(h) ≤ q(g),

and hence

σ(gh)− σ(g)− σ(h) ≤ min(q(g), q(h)).

The proof that

σ(gh)− σ(g)− σ(h) ≥ −min(q(g), q(h))

is similar. �
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14.2. Poisson bracket inequality

Let (M,ω) be a closed symplectic manifold. Let c : H̃am(M,ω)→ R be a subadditive
spectral invariant. Put qc(φ) := c(φ) + c(φ−1).

Definition 14.7. The spectral width (with respect c) of an open subset U ⊂ M is
defined by

wc(U) := sup{qc(φ) | φ ∈ H̃am(M,ω)}.

For (not necessarily normalized) autonomous Hamiltonians F,G : M → R, let φF =

{φtF }, φG = {ΦtG} ∈ H̃am(M,ω) denote their flows, and put

Π(F,G) := |σ(φF+G)− σ(φF )− σ(φG)|.

Also, put

S(F,G) := min(wc(suppF ), wc(suppG)).

Here suppF, suppG denote the supports of F,G respectively.
The following is the “Poisson bracket inequality”, c.f. [PR, §4.6]:

Proposition 14.8. We have Π(F,G) ≤
√

2S(F,G)||{F,G}||.

Proof. By the Proposition 14.6, we have

|σ(φFφG))− σ(φF )− σ(φG)| ≤ min(q(φF ), q(φG))

≤ S(F,G).

Recall that by the stability axiom for c we have

c(φF )− c(φG) ≤
∫ 1

0

max(F −G)dt.

Exercise 14.9. We have also σ(φF )− σ(φG) ≤
∫ 1

0
max(F −G)dt.

Assume without loss of generality that we have 〈F 〉 = 〈G〉 = 0. Then we have

σ(φF+G)− σ(φFφG) ≤
∫ 1

0

max(F +G− (F +G ◦ (φtF )−1))dt

≤
∫ 1

0

||G−G ◦ (φtF )−1||dt

=

∫ 1

0

||G ◦ φtF −G||dt.

Note that have

G ◦ φtF −G =

∫ s=t

s=0

∂s(G ◦ φsF )ds

=

∫ t

0

(dG ◦XF ) ◦ (φsF )ds

=

∫ t

0

{G,F} ◦ φsF ds

≤ t||{G,F}||,
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and hence

|σ(φF+G)− σ(φFφG)| ≤ 1
2 ||{G,F}||.

We then have

Π(F,G) = |σ(φF+G)− σ(φF )− σ(φG)| ≤ |σ(φF+G)− σ(φFφG)|+ |σ(φFφG)− σ(φF )− σ(φG)|
≤ 1

2 ||{F,G}||+ |σ(φFφG)− σ(φF )− σ(φG)|
≤ 1

2 ||{F,G}||+ S(F,G).

It follows that for any s ∈ R we have

Π(sF, sG) ≤ 1
2 ||{sF, sG}||+ S(sF, sG).

Noting that each of these terms scale differently, this gives

Π(F,G) ≤ s
2 ||{F,G}||+

S(F,G)

s
.

Exercise 14.10. For A,B ∈ R, th function f(s) = sA+ 1
sB has minimum value 2

√
A,B.

By above the exercise, we have

Π(F,G) ≤ 2
√

1
2 ||{F,G]}||S(F,G) =

√
2||{F,G}||S(F,G),

which is the desired inequality. �

We will not be making use of the Poisson bracket inequality except for the following
corollary:

Corollary 14.11. Suppose that we have wc(suppF ) = 0 or wc(suppG) = 0. Then we
have σ(φF+G) = σ(φF ) + σ(φG).

14.3. Proof of Lemma C

Our goal is to prove that for φ = [{φt}] ∈ H̃am(M,ω) such that φ1 6= 1, we have
qc(φ) > 0.

Lemma 14.12. For U ⊂ M open and displaceable and φ ∈ H̃amU (M,ω), we have
σ(φ) = −CalU (φ)∫

M
ω∧n

Proof. Recall that by Lemma 13.4, if ψ ∈ H̃am(M,ω) displaces U , then we have

c(ψφ) = c(ψ)− CalU (φ)∫
M
ω∧n

,

in which case we have

c(φ) = c(ψ−1ψφ) ≤ c(ψφ) + c(ψ−1)

= c(ψ)− CalU (φ)∫
M
ω∧n

+ c(ψ−1)

= qc(ψ)− CalU (φ)∫
M
ω∧n

,

and therefore

c(φ) ≤ ec(U)− CalU (φ)∫
M
ω∧n

.
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Similarly, we have

c(φ) ≥ c(ψφ)− c(ψ) = −CalU (φ)∫
M
ω∧n

.

Recalling that CalU is a homomorphism, we have then

−CalU (φ)∫
M
ω∧n

≤ c(φk)

k
≤ ec(U)

k
− CalU (φ)∫

M
ω∧n

which immediately gives the desired result after taking the limit k →∞. �

Proof of Lemma C. Suppose by contradiction that we have qc(φ) = 0. Let U ⊂M
be an open subset which is displaced by φ. Note that we have ec(φ) = 0.

Exercise 14.13. We can find θ1, . . . , θN ∈ Ham(M,ω) such that {θi(U)} is a cover of
M .

Let {βi} be a partition of unity subordinate to the cover {θi(U)}, i.e. suppβi ⊂ θi(U)

and
∑N
i=1 βi = 1. We also have ec(θi(U)) = ec(U) for i = 1, . . . , N (convince yourself). Then

we have

ω(suppβi) ≤ ω(θi(U)) ≤ 2ec(θi(U)) = 0,

where the second inequality follows from Lemma B. We then have

0 = σ(φβ1+···+βN ) = σ(φβ1) + σ(φβ2+···+βN )

= . . .

= σ(φβ1
) + · · ·+ σ(φβN )

= −
∑N
i=1 Calθi(U)(φβi)∫

M
ω∧n

=
−
∑N
i=1

∫
M
βiω
∧n∫

M
ω∧n

= −1,

which is a contradiction.
�
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