Math 635 - Markov Triples and Vianna Triangles Wes Wise

1. MARKOV TRIPLES
Definition 1. The Diophantine equation
a® 4 b* 4 ¢* = 3abc
1s called the Markov equation.

The Markov equation arises in a number of fields [1]. In particular, we concern ourselves with

positive integer solutions to the Markov equation, known as Markov triples.
Lemma 2. If (a,b,c) is a Markov triple, then so is (a,b,3ab — c).

Proof. Suppose (a, b, c) is a Markov triple. Then observe

a® + b + ¢ = 3abe
a? 4+ b* 4 ¢ 4+ 9a*b* — 6abc = 3abc + 9a*b* — 6abe
a? + b* + (3ab — ¢)? = 3ab(3ab — ¢).
We know 3ab— c is an integer from its construction of integers a, b, ¢, and further is positive as the

left hand size is the sum of two positive integers and one non-negative integer. Thus (a, b, 3ab — ¢)

is also a Markov triple. O

Definition 3. The operation of replacing a Markov triple (a,b,c) with (a,b,3ab — ¢) is called a

mutation on c.

Given certain properties of a,b,c that form a Markov triple, we can describe properties its

mutation on ¢ will have.

Lemma 4. If (a,b,c) is a Markov triple such that a < b < ¢, then b lies in the closed interval
between ¢ and 3ab—c. If a < b, then b lies in the interior of this interval. If b < ¢, then 3ab—c < b.

Proof. The Markov triple (a, b, ¢) has associated quadratic function f(z) = 2? — 3abx + a® + b? with

positive integer roots ¢ and 3ab — c¢. Observe
fo) =0 —3ab® +a?+b*=2-3a)b> +a®> <a’-b*<0.
Hence b lies between the roots of f, and is strictly between the roots if a® — % < 0. O

Lemma 5. The only Markov triple with no unique largest element is (1,1,1).

Proof. Suppose (a, b, ¢) is a Markov triple with a < b = ¢. Then substituting b = ¢ in the Markov
equation gives a? + 2b> = 3ab?; that is, a> = (3a — 2)b?. By definition a > 1, so 3a — 2 > 1 and
thus a® > b2. So a = b = ¢, and substituting in the Markov equation grants a? = (3a —2)a?. Hence
3a —2 =1 implies that a=b=c=1. O



With these properties in mind, we can construct a graph in which vertices are Markov triples
and edges connect vertices related by a mutation. This graph is a connected tree which we will call
the Markov tree. A small portion of the Markov tree can be seen below, as shown in [2].
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Theorem 6. The Markov tree is connected.

Proof. Let (a,b,c) be a Markov triple with ¢ > a,b. After performing a mutation on ¢, by Lemma
4 this decreases the value of the largest element. If there is still a unique largest element, perform
another mutation. Repeat this procedure until no unique largest element exists. The process is
guaranteed to terminate as a, b, ¢ must remain strictly positive. By Lemma 5, we know (1,1,1) is
the unique Markov triple with a repeated largest element. Thus in the Markov tree we have a path

from any Markov triple to the root vertex (1,1, 1), and the Markov tree is hence connected. ]

Lemma 7. We can define a global choice of orientation on the edge of the Markov tree in the
following manner: If an edge connects two Markov triples (a,b,c) and (a,b,3ab — c), then the edge

1s directed towards the Markov triple with the smaller maximal element.

Proof. To confirm this orientation is well-defined, we need to show maximal elements in (a, b, ¢) and
(a,b,3ab — c) are different. WLOG, suppose a < b and ¢ < 3ab — ¢. By Lemma 4, ¢ < b < 3ab — c.
Hence max(a, b, c) = b and max(a, b, 3ab — ¢) = 3ab — c. It remains to see b # 3ab — ¢, which is only
possible if @ = b by Lemma 5, in which a = b = ¢ = 1 and orientation around this root vertex is

clear. 0
Theorem 8. The Markov tree is a tree.

Proof. By Theorem 6, we have already seen that the Markov tree is connected. It remains to show
that the Markov tree is a tree; that is, there are no cycles. In particular, there is a unique path
from any vertex directed downwards to the root vertex (1,1,1). Say the distance from a vertex to
the root vertex is the height of the path.
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Consider two vertices t1, to. Following the paths down to (1, 1,1), there must exist an intersection
vertex m. Then we have a simple path P from t; to m to t3. Suppose there exists another simple
path @ which also connects t; to m to ts. Then Q and P must differ by at least an edge. Let e; be

an edge in () that is not in P which maximizes height. There are three possibilities:

(1) (e; = e1) Since e; is not in P, it must be an upward path from ¢;. Since e; is a highest edge,
the next edge must return along the complement of e; as the only downward path. This
contradicts @ as a simple path.

(2) (e; is the last edge) We arrive at the same contradiction as the previous case.

(3) (Otherwise) The edge e; has adjacent edges e;_1,e;41 in the path. At least one of these
must start at the highest point of e;. Since it cannot go higher, it must be the reverse of

e;, contradicting @) as a simple path.

Hence there is a unique simiple path between any two vertices and the Markov tree is indeed a
tree. g

2. VIANNA TRIANGLES

Definition 9. A Vianna triangle is an almost toric diagram whose edges are vy, v, vs with affine

lengths €1, 02, ¥3 and whose vertices Py, Py, P3 are modelled on the T-singularities ﬁ(l, dkprqr—1)
k

for k=1,2,3.

We call di, px, qi, £x for k =1,2,3 the Vianna data of a Vianna triangle. For example, we can

view a Vianna triangle D(P;, P, P3) below:
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Theorem 10 (Vianna [3]). For every Markov triple p1, p2, p3, there is a Vianna triangle D(p1, p2, p3)
with the following properties:

(1) The diagram D(1,1,1) is obtained from the standard toric diagram of CP? by performing
three nodal trades.

(2) The diagram D(p1,p2,ps) is a triangle with three base-nodes ni,na, ng, obtained by iterated
mutation on D(1,1,1) (in particular, the associated almost toric manifold is CIP?).

(3) For k =1,2,3, there is an integer q; and a Lagrangian pinwheel of type (pk, qx) living over
the branch cut which connects ny to a corner Pj,.

(4) The affine length of the edge opposite the corner Py is 3pi/(pk+1Pk+2) where indices are

taken modulo 3.



The Vianna triangle D(1,1,1) with data dj = dy =ds =1, p1 =p2 =p3 =1, and {; = ly =

¢3 = 3 is given below, as shown in [2]:

Now, we collect a few lemmas to prove Vianna’s Theorem.
Lemma 11. If U} denotes the primitive integer vector along vy, then we have the relation
U A\ U1 = dipr2Dppo-
Corollary 12. Thus,

U10ad3ps = Lol3dipt = (3€1d2p3.

For ease of notation, let K be defined as the value in Corollary 12, and let the total affine length
£1 + £5 + €3 be given by L. Now, we can show that L and K are unchanged by mutation to help

prove Vianna’s Theorem.

Dk Kdy,

Corollary 13. We have ¢} = .
Pe+1Pk+2 \| di+1dpt2

Proof. WLOG, set k = 3. By Corollary 12,
K K

lh=——>5, lo=——", (ldp;=K
l3dap3 lsdip? s
so by substitution
K?d3p3 2 Kd
2 31)232:[( = ég:(?%)( 3)'
t3d1drpip; pip3 /) \dids
Kd
Thus /3 = b3 3 as desired. O
pip2 \ dids
Corollary 14. We have
L+/didads
d1p? + dop3 + dsp = ———— :
1P1 2P2 3P3 VK P1p2p3
Lemma 15. The eigenline at vertex Pyio points in the direction Ykt1 — %
k+2DPk+2

Proof. Making an integral affine transformation, we can assume that @ = (0,—1) and vy =
(dk+2p%+2, dk+opk+2qk+2—1). In these coordinates, the eigenline points in the (pgy2, qrr2) direction,
el Tk g desired. O

which is a
k+2Pk+2
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Lemma 16. If we perform a mutation on the vertex Ps then we obtain a new Vianna triangle with
data:

d) = di, d, = do, d, = ds
dp2+d2p2
Py = p1, ph = P2, %:—EEJ
ladop? ladyp?
=20 ty = h=ti+ b

 dip? + dop}’  dip? + dop?’

Corollary 17. The values K and L are unchanged by mutation at any vertex Py.

Proof. (Vianna) The triangle D(1,1,1) is a Vianna triangle with Vianna data d; = dy = d3 = 1,
pr =p2 =p3 =1, and ¢; = o = ¢35 = 3. In this case, K = L = 9. By Corollaries 14 and 17,
performing iterated mutations on D(1,1,1) will produce new Vianna triangles with Vianna data
di, Pi» O such that p? + p3 + p3 = 3p1paps and 0, = 3pg/ (Prt1Prt2)-

Let D(p1,p2,p3) be the triangle associated with the Markov triple (pi, p2,p3). Mutation at ps
gives a new Markov triple py, pa, ph = 3p1p2 — ps. These are the only two Markov triples containing
D1, P2- g

Open Question 18. Characterize which quadrilaterals arise as mutations of a square or a rectan-

gle.
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