
Math 635 - Markov Triples and Vianna Triangles Wes Wise

1. Markov Triples

Definition 1. The Diophantine equation

a2 + b2 + c2 = 3abc

is called the Markov equation.

The Markov equation arises in a number of fields [1]. In particular, we concern ourselves with

positive integer solutions to the Markov equation, known as Markov triples.

Lemma 2. If (a, b, c) is a Markov triple, then so is (a, b, 3ab− c).

Proof. Suppose (a, b, c) is a Markov triple. Then observe

a2 + b2 + c2 = 3abc

a2 + b2 + c2 + 9a2b2 − 6abc = 3abc+ 9a2b2 − 6abc

a2 + b2 + (3ab− c)2 = 3ab(3ab− c).

We know 3ab−c is an integer from its construction of integers a, b, c, and further is positive as the

left hand size is the sum of two positive integers and one non-negative integer. Thus (a, b, 3ab− c)

is also a Markov triple. □

Definition 3. The operation of replacing a Markov triple (a, b, c) with (a, b, 3ab − c) is called a

mutation on c.

Given certain properties of a, b, c that form a Markov triple, we can describe properties its

mutation on c will have.

Lemma 4. If (a, b, c) is a Markov triple such that a ≤ b ≤ c, then b lies in the closed interval

between c and 3ab−c. If a ⪇ b, then b lies in the interior of this interval. If b ⪇ c, then 3ab−c ≤ b.

Proof. The Markov triple (a, b, c) has associated quadratic function f(x) = x2−3abx+a2+ b2 with

positive integer roots c and 3ab− c. Observe

f(b) = b2 − 3ab2 + a2 + b2 = (2− 3a)b2 + a2 ≤ a2 − b2 ≤ 0.

Hence b lies between the roots of f , and is strictly between the roots if a2 − b2 < 0. □

Lemma 5. The only Markov triple with no unique largest element is (1, 1, 1).

Proof. Suppose (a, b, c) is a Markov triple with a ≤ b = c. Then substituting b = c in the Markov

equation gives a2 + 2b2 = 3ab2; that is, a2 = (3a − 2)b2. By definition a ≥ 1, so 3a − 2 ≥ 1 and

thus a2 ≥ b2. So a = b = c, and substituting in the Markov equation grants a2 = (3a−2)a2. Hence

3a− 2 = 1 implies that a = b = c = 1. □
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With these properties in mind, we can construct a graph in which vertices are Markov triples

and edges connect vertices related by a mutation. This graph is a connected tree which we will call

the Markov tree. A small portion of the Markov tree can be seen below, as shown in [2].

Theorem 6. The Markov tree is connected.

Proof. Let (a, b, c) be a Markov triple with c > a, b. After performing a mutation on c, by Lemma

4 this decreases the value of the largest element. If there is still a unique largest element, perform

another mutation. Repeat this procedure until no unique largest element exists. The process is

guaranteed to terminate as a, b, c must remain strictly positive. By Lemma 5, we know (1, 1, 1) is

the unique Markov triple with a repeated largest element. Thus in the Markov tree we have a path

from any Markov triple to the root vertex (1, 1, 1), and the Markov tree is hence connected. □

Lemma 7. We can define a global choice of orientation on the edge of the Markov tree in the

following manner: If an edge connects two Markov triples (a, b, c) and (a, b, 3ab− c), then the edge

is directed towards the Markov triple with the smaller maximal element.

Proof. To confirm this orientation is well-defined, we need to show maximal elements in (a, b, c) and

(a, b, 3ab− c) are different. WLOG, suppose a ≤ b and c < 3ab− c. By Lemma 4, c ≤ b ≤ 3ab− c.

Hence max(a, b, c) = b and max(a, b, 3ab− c) = 3ab− c. It remains to see b ̸= 3ab− c, which is only

possible if a = b by Lemma 5, in which a = b = c = 1 and orientation around this root vertex is

clear. □

Theorem 8. The Markov tree is a tree.

Proof. By Theorem 6, we have already seen that the Markov tree is connected. It remains to show

that the Markov tree is a tree; that is, there are no cycles. In particular, there is a unique path

from any vertex directed downwards to the root vertex (1, 1, 1). Say the distance from a vertex to

the root vertex is the height of the path.
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Consider two vertices t1, t2. Following the paths down to (1, 1, 1), there must exist an intersection

vertex m. Then we have a simple path P from t1 to m to t2. Suppose there exists another simple

path Q which also connects t1 to m to t2. Then Q and P must differ by at least an edge. Let ei be

an edge in Q that is not in P which maximizes height. There are three possibilities:

(1) (ei = e1) Since ei is not in P , it must be an upward path from t1. Since ei is a highest edge,

the next edge must return along the complement of ei as the only downward path. This

contradicts Q as a simple path.

(2) (ei is the last edge) We arrive at the same contradiction as the previous case.

(3) (Otherwise) The edge ei has adjacent edges ei−1, ei+1 in the path. At least one of these

must start at the highest point of ei. Since it cannot go higher, it must be the reverse of

ei, contradicting Q as a simple path.

Hence there is a unique simiple path between any two vertices and the Markov tree is indeed a

tree. □

2. Vianna Triangles

Definition 9. A Vianna triangle is an almost toric diagram whose edges are v1, v2, v3 with affine

lengths ℓ1, ℓ2, ℓ3 and whose vertices P1, P2, P3 are modelled on the T -singularities 1
dkp

2
k
(1, dkpkqk−1)

for k = 1, 2, 3.

We call dk, pk, qk, ℓk for k = 1, 2, 3 the Vianna data of a Vianna triangle. For example, we can

view a Vianna triangle D(P1, P2, P3) below:

P2

P1

P3

v3

v1

v2

Theorem 10 (Vianna [3]). For every Markov triple p1, p2, p3, there is a Vianna triangle D(p1, p2, p3)

with the following properties:

(1) The diagram D(1, 1, 1) is obtained from the standard toric diagram of CP2 by performing

three nodal trades.

(2) The diagram D(p1, p2, p3) is a triangle with three base-nodes n1, n2, n3, obtained by iterated

mutation on D(1, 1, 1) (in particular, the associated almost toric manifold is CP2).

(3) For k = 1, 2, 3, there is an integer qk and a Lagrangian pinwheel of type (pk, qk) living over

the branch cut which connects nk to a corner Pk.

(4) The affine length of the edge opposite the corner Pk is 3pk/(pk+1pk+2) where indices are

taken modulo 3.
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The Vianna triangle D(1, 1, 1) with data d1 = d2 = d3 = 1, p1 = p2 = p3 = 1, and ℓ1 = ℓ2 =

ℓ3 = 3 is given below, as shown in [2]:

Now, we collect a few lemmas to prove Vianna’s Theorem.

Lemma 11. If v⃗k denotes the primitive integer vector along vk, then we have the relation

v⃗k ∧ v⃗k+1 = dk+2p
2
k+2.

Corollary 12. Thus,

ℓ1ℓ2d3p
2
3 = ℓ2ℓ3d1p

2
1 = ℓ3ℓ1d2p

2
2.

For ease of notation, let K be defined as the value in Corollary 12, and let the total affine length

ℓ1 + ℓ2 + ℓ3 be given by L. Now, we can show that L and K are unchanged by mutation to help

prove Vianna’s Theorem.

Corollary 13. We have ℓk =
pk

pk+1pk+2

√
Kdk

dk+1dk+2
.

Proof. WLOG, set k = 3. By Corollary 12,

ℓ1 =
K

ℓ3d2p22
, ℓ2 =

K

ℓ3d1p21
, ℓ1ℓ2d3p

2
3 = K

so by substitution

K2d3p
2
3

ℓ23d1d2p
2
1p

2
2

= K =⇒ ℓ23 =

(
p23
p21p

2
2

)(
Kd3
d1d2

)
.

Thus ℓ3 =
p3
p1p2

√
Kd3
d1d2

as desired. □

Corollary 14. We have

d1p
2
1 + d2p

2
2 + d3p

2
3 =

L
√
d1d2d3√
K

p1p2p3.

Lemma 15. The eigenline at vertex Pk+2 points in the direction
v⃗k+1 − v⃗k
dk+2pk+2

.

Proof. Making an integral affine transformation, we can assume that v⃗k = (0,−1) and v⃗k+1 =

(dk+2p
2
k+2, dk+2pk+2qk+2−1). In these coordinates, the eigenline points in the (pk+2, qk+2) direction,

which is
v⃗k+1−v⃗k
dk+2pk+2

as desired. □
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Lemma 16. If we perform a mutation on the vertex P3 then we obtain a new Vianna triangle with

data:

d′1 = d1, d′2 = d2, d′3 = d3

p′1 = p1, p′2 = p2, p′3 =
dp21 + d2p

2
2

d3p3

ℓ′1 =
ℓ3d2p

2
2

d1p21 + d2p22
, ℓ′2 =

ℓ3d1p
2
1

d1p21 + d2p22
, ℓ′3 = ℓ1 + ℓ2.

Corollary 17. The values K and L are unchanged by mutation at any vertex Pk.

Proof. (Vianna) The triangle D(1, 1, 1) is a Vianna triangle with Vianna data d1 = d2 = d3 = 1,

p1 = p2 = p3 = 1, and ℓ1 = ℓ2 = ℓ3 = 3. In this case, K = L = 9. By Corollaries 14 and 17,

performing iterated mutations on D(1, 1, 1) will produce new Vianna triangles with Vianna data

dk, pk, ℓk such that p21 + p22 + p33 = 3p1p2p3 and ℓk = 3pk/(pk+1pk+2).

Let D(p1, p2, p3) be the triangle associated with the Markov triple (p1, p2, p3). Mutation at p3

gives a new Markov triple p1, p2, p
′
3 = 3p1p2− p3. These are the only two Markov triples containing

p1, p2. □

Open Question 18. Characterize which quadrilaterals arise as mutations of a square or a rectan-

gle.
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