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1 Introduction
The contents of this note is mostly taken from chapter 5 of the book [CLS24]. I want to discuss
the notions of generalized co-ordinates for toric varieties, which give a different way to present
toric varieties, which sometimes give simpler way to describe various geometric notions related
to them. Recall, that a toric variety is an algebraic variety X, containing an algebraic torus
T = Gn

m as a Zariski-dense open subset, such that the action of the torus on itself extends to the
whole variety X. This description of a toric variety, although very general, is hard to work with.
One usually restricts to normal toric varieties(which we will also do), which can be described
by the data of a fan Σ, and have a combinatorial flavor to it. Generalized co-ordinates allow us
to describe toric varieties, as the quotient of an action on a certain quasi-affine variety, which is
quite natural to describe in terms of the fan.

2 Quotients in Algebraic Geometry
If a variety X, is endowed with an algebraic action of a reductive, algebraic group G(for us the
group G will always be a subgroup of an algebraic torus), it is in general a difficult task to define
an algebro-geometric object which can play the role of “X/G”. To obtain the right answer, let us
begin with some definitions of quotients. We will assume the group G is reductive and algebraic
throughout.

Definition 2.1. Let G act on a variety X and π : X → Y is a morphism of varieties, constant
on G-orbits. We call π a good categorical quotient(gcq) if the following conditions hold:

1. U ⊆ Y open, then the natural map OY (U) → OX(π−1(U)) induces an isomorphism

OY (U) ≃ OX(π−1(U))G

2. W ⊆ X is closed and G-invariant, then π(W ) ⊆ Y is closed.

3. If W1, W2 ⊆ X are closed, disjoint and G-invariant, then π(W1), π(W2) are disjoint in Y .

Remark 2.2.

• If π : X → Y is a gcq, we also denote Y by X//G. This has a universal property, that
is whenever we have a morphism of varieties, ϕ : X → Z such that ϕ(g · x) = ϕ(x), ∀g ∈
G, x ∈ X, there is a unique map ϕ̄ : X//G → Z making the following diagram commute :

X Z

X//G

ϕ

π ∃!ϕ̄
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If π is a morphism of varieties, such that above factorization exists, then π is called a
categorical quotient.

Proposition/Definition 2.3. Let π : X → X//G be a gcq. Then TFAE :

1. All G-orbits are closed in X.

2. Given x, y ∈ X, we have

π(x) = π(y) ⇐⇒ x, y lie in the same G − orbit

3. π induces a bijection
{G − orbits in X} ≃ X//G

4. The image of the morphism G × X → X × X defined by (g, x) 7→ (g · x, x) is given by the
fiber product X ×X//G X.

If any, and hence all of the above conditions hold, we say π is a geometric quotient(gq) and we
write π : X → X/G.

Geometric quotients are the ideal kind of quotients we wish to deal with, but we will see
that many quotients that appear naturally, are not geometric, but very close to being geometric.
Let’s look at two examples. We will use the following fact that if R is a ring with a G-action,
and the ring of invariants RG = r ∈ R|g · r = r is finitely generated, then Spec (R) → Spec

(
RG

)
induced by the inclusion RG ↪→ R is a gcq.

Example 2.4.

1. Let R = C[x1, · · · , xn], let C× act on it by scalar multiplication

λ · f(x1, · · · , xn) = f(λx1, · · · , λxn)

Then the invariant subring
C[x1, · · · , xn]C

× ∼= C
as any polynomial fixed by the action must be constant. This happens as the only closed
orbit is the orbit of the closed point 0 ∈ An. Hence

An//C× ∼= Spec (C)

but this is very far from a geometric quotient as there are many non-closed orbits.

2. Let C× act on A4 = Spec (C[x1, x2, x3, x4]) via

λ · (a1, a2, a3, a4) = (λa1, λa2, λ−1a3, λ−1a4)

In this case, the invariant subring is

C[x1, · · · , x4]C
×

= C[x1x3, x2x4, x1x4, x2x3]

Thus Spec
(
C[x1, · · · , x4]C×

)
= V (xy−zw) ⊆ A4. This is again a gcq. It is not a geometric

quotient, as the preimage of π : A4 → V (xy − zw) at (0, 0, 0, 0), consists of infinitely many
orbits. More directly, (1, 0, 0, 0) and (0, 1, 0, 0) have the same image under π but they don’t
lie in the same C×-orbit. But if we consider U = V (xy−zw)\{(0, 0, 0, 0)}, it is not difficult
to see that

π|π−1(U) : π−1(U) → U

is a geometric quotient. This is not a geometric quotient, but is very close to it.
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This inspires us to make the following definition :

Proposition/Definition 2.5. Let π : X → X//G be a gcq. Then TFAE :

1. U ⊆ X is a G-invariant Zariski dense open subset, such that G · x is closed in X for every
x ∈ U .

2. X//G has a Zariski dense open subset U , such that π|π−1(U) : π−1(U) → U is a geometric
quotient.

If any and hence both of the equivalent conditions hold, we say π is an almost geometric quo-
tient(agq).

Remark 2.6. Thus the first quotient in Example 2.4 is not an almost geometric quotient, but
the second one is.

3 Toric Varieties as (Almost) Geometric Quotients
Following section 5.1 of [CLS24], in this section we will try to give a description of toric varieties
coming from a fan as a geometric quotient

XΣ ∼= (Cr \ Z)//G

for appropriate choices of affine space Cr, a closed subvariety Z inside the affine space, and a
reductive group G.

Let us assume that the toric variety XΣ has no torus factors. It can be checked that that
is equivalent to saying the one-dimensional rays uρ, ρ ∈ Σ(1) generate the vector space NR. In
such a situation we obtain a short exact sequence of abelian groups -

0 → M →
⊕

ρ∈Σ(1)

ZDρ → Cl(XΣ) → 0

Now if we apply HomZ(−,C×) to this sequence, this functor is an exact functor, as HomZ(−,C×)
is left exact, and C× is a divisible abelian group, and hence an injective object in the category
of abelian groups, making the functor right exact as well. Applying this we get a new exact
sequence :

1 → HomZ(Cl(XΣ),C×) → (C×)Σ(1) → TN → 1

TN is the torus living inside the toric variety XΣ. If we denote by G = HomZ(Cl(XΣ),C×), then
we get a short exact sequence of affine algebraic groups

1 → G → (C×)Σ(1) → TN → 1

Denote CΣ(1) = Spec (S) where S = C[xρ : ρ ∈ Σ(1)], this ring is also called the total co-
ordinate ring of XΣ. The co-ordinates xρ are the so-called generalized co-ordinates on XΣ, but
unlike usual co-ordinates, we look at them upto G-action. Now we need to define the exceptional
subset Z. For every cone σ ∈ Σ, denote

x̂σ =
∏

ρ/∈σ(1)

xρ
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where σ(1) denotes the rays appearing in the cone σ. Then we define the irrelevant ideal

B(Σ) := (x̂σ : σ ∈ Σ) ⊆ S, Z(Σ) := V (B(Σ))

Notice to compute B(Σ), it is enough to look at the maximal cones, as the other monomials
are multiples of the monomials corresponding to maximal cones. Now (C×)Σ(1) acts on CΣ(1)

by diagonal matrices, and one can induce an action on the complement CΣ(1) \ Z(Σ). Thus
G ⊆ (C×)Σ(1) also acts. We construct a new fan, Σ̂ in RΣ(1) as follows :

• Consider the lattice ZΣ(1) =
⊕

ρ∈Σ(1)

Zeρ.

• For every cone σ ∈ Σ, define

σ̂ = Cone(eρ : ρ ∈ σ(1)) ⊂ RΣ(1)

• Σ̂ = {τ : τ ⪯ σ̂ for some σ ∈ Σ}

Now one only needs to notice that CΣ(1) \ Z(Σ) = XΣ̂, the toric variety corresponding to the
new fan. We also have a natural map ZΣ(1) → N , sending eρ 7→ uρ, compatible with Σ̂, Σ. Thus
we obtain a toric morphism CΣ(1) \ Z(Σ) = XΣ̂ → XΣ, which is constant on G-orbits. This is
the content of Proposition 5.1.9 of [CLS24]. Now we are ready to state the main theorem :

Theorem 3.1. [CLS24, Theorem 5.1.11] Let XΣ be a toric variety with no torus factors, and
π : CΣ(1) \ Z(Σ) → XΣ then

1. π is an almost geometric quotient for the action of G on CΣ(1) \ Z(Σ) and thus

XΣ ∼= (CΣ(1) \ Z(Σ))//G

2. π is a geometric quotient ⇐⇒ Σ is simplicial.

Proof. We will give a short sketch of the main ideas of the proof. For more details, we refer to the
book. Consider the open Uσ for each cone. Then one can show that π|π−1(Uσ) : π−1(Uσ) → Uσ is
actually a toric morphism πσ : U

σ̂
→ Uσ. It can be shown that πσ is gcq, and since the property

of being a gcq is local, so is π. The next step is to show that πσ is a gq if and only if σ is a
simplicial cone. Once we have this, to prove the theorem, consider the subfan Σ′ ⊂ Σ consisting
of the simplicial cones. Then XΣ′ ⊂ XΣ is open, and furthermore, Σ′(1) = Σ(1), so both toric
varieties have the same total co-ordinate ring S, and reductive group G.

π−1(XΣ′) = CΣ(1) \ Z(Σ′) =
⋃

σ∈Σ′

U
σ̂

Then by what we have already obtained, πσ is a gq for σ ∈ Σ′. Hence π|π−1(XΣ′ ) is also a
geometric quotient. This proves the theorem.

Now so far we assumed there are no torus factors. Now let us remove this condition. Suppose,
uρ, ρ ∈ Σ(1) spans a proper subspace LR of NR. Denote L = LR ∩ N . Choose a complement
N ∼= L ⊕ P , let rank(P )= r. Now the same fan Σ gives a fan in LR. We can write

XΣ ∼= XΣ,L × (C×)r
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where XΣ,L is free of torus factors. Also B(Σ, L) = B(Σ, N) and Z(Σ, L) = Z(Σ, N). Thus we
can apply the previous theorem and write

XΣ,L
∼= (CΣ(1) \ Z(Σ))//G

Following this, one can write

XΣ ∼= XΣ,L × (C×)r ∼= (CΣ(1)+r \ Z ′(Σ))//G

where Z ′(Σ) = (Z(Σ) × Cr) ∪ (CΣ(1) × V (x1 · · · xr)). Thus we still have a presentation even if
the toric variety has torus factors.

Remark 3.2.

1. There are some differences between the case where there are no torus factors and the general
case. In the general case, the presentation is non-canonical, as it depends on the choice of
a complement P .

2. Also in this case Z ′(Σ) has codimension 1, but previously Z(Σ) always has codimension
≥ 2.

Example 3.3.

1. Consider Pn. The fan Σ has Σ(1) = {e0, e1, · · · , en} where e1, · · · , en are the standard basis
for Rn, and e0 +e1 + · · ·+en = 0. Then S = C[x0, · · · , xn]. There are n+1 maximal cones,
σi, then B(Σ) = (x0, · · · , xn) and Z(Σ) = V (B(Σ)) = {0}. Since the fan is simplicial, we
obtain a geometric quotient

Pn ∼= (Cn+1 \ {0})/C×

2. Consider the lattice N = Zn+1/Z(q0, q1, · · · , qn) where qi’s have no common factors. The
images of the standard basis ei in N give elements ui, and let Σ be the fan generated by
proper subsets of {u0, · · · , un}. We also have

∑n
i=0 qiui = 0. Note CΣ(1) = Cn+1 and

Z(Σ) = {0} by the previous argument. Note the class group exact sequence takes the form

0 → M → Zn+1 → Z → 0

where the map Zn+1 → Z is given by (v0, · · · , vn) 7→
∑n

i=0 qivi. Thus after taking charac-
ters, we get

1 → C× → (C×)n+1 → TN → 1

where the first inclusion is C× → (C×)n+1 given by λ 7→ (λq0 , · · · , λqn). Thus the group
G = {(λq0 , · · · , λqn) : λ ∈ C×}. Note the fan is simplicial, so we get again a geometric
quotient

Pn(q0, · · · , qn) ∼= (Cn+1 \ {0})/C×

where C× acts by
λ · (a0, · · · , an) = (λq0a0, · · · , λqnan)

This way we recover the quotient description of the weighted projective space.
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4 Quasi Coherent Sheaves on Toric Varieties
Finally, let us apply what we have learnt to understand quasicoherent sheaves on toric varieties.
To start off, note that the ring S = C[xρ : ρ ∈ Σ(1)] is graded by the class group Cl(XΣ). For
any monomial xa =

∏
ρ∈Σ(1)

xaρ
ρ we can define

deg(xa) =

 ∑
ρ∈Σ(1)

aρDρ

 ∈ Cl(XΣ)

For β ∈ Cl(XΣ), we will denote by Sβ the β-graded piece. Let M =
⊕

β∈Cl(XΣ) Mβ is called
a graded S-module if it is an S-module, satisfying Sα · Mβ ⊆ Mα+beta. We can associate a
quasicoherent sheaf to a graded module.

Proposition 4.1. There exists a quasicoherent sheaf M̃ on XΣ such that σ ∈ Σ, such that for
every σ ∈ Σ,

Γ(Uσ, M̃) = (M [x̂σ
−1])0

If M is finitely generated, then M̃ is coherent.

We also have a shifted module S(α), such that the β-graded piece is given by

(Sα)β = Sα+β

It can be shown that
S̃(α) = OXΣ(α)

which is the line bundle representing the element α in Cl(XΣ). For a quasicoherent sheaf F , we
can thus define F (α) := F ⊗ S̃(α). Now associate a graded S-module

Γ•(F ) =
⊕

β∈Cl(XΣ)

Γ(XΣ, F (β))

Then the following theorem holds :

Theorem 4.2. [CLS24, Proposition 6.A.3] Let F be a quasicoherent sheaf on XΣ. Then F ∼=
Γ̃•(F ).

Remark 4.3. The map M 7→ M̃ is surjective, as in the above theorem. But it is not injective.
For example, if XΣ is a smooth toric variety, M a finitely generated graded S module, then

M̃ = 0 ⇐⇒ B(Σ)ℓM = 0 for ℓ >> 0
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