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1 Introduction

Let p : M∆ → ∆ be the moment map of the symplectic toric manifold associated
to the Delzant polytope ∆. We can consider p as a Lagrangian torus fibration,
which is a special case of almost toric fibrations, ATF. The main goal of this
exposition is to give a general way to consturct Lagrangian submanifolds inside
the total space of ATF, called tropical Lagrangians, following Mikhalkin[1]. We
will first review some basics of tropical curves and visible Lagrangian submani-
folds. Then the specific constructions of the latter will give rise to a dictionary
between tropical curves in the base diagram of an almost toric fibration and
tropical Lagrangian submanifolds of the corresponding symplectic manifold.

2 Tropical Curves and Lagrangian Realizability

We give the minimal amount of related definitions in tropical geometry for com-
pleteness of our construction in section 3. For ones who wish to avoid suffering
reading definitions, we can just consider tropical curves as 3−valent connected
nontrivial graphs inside a polyhedral domain, which will later be associated
with a Lagrangian submanifold via explicit geometric description. Take an
n−dimensional lattice Λ. Let A = Λ⊗Z R ∼= Zn ⊗Z R.

Definition 2.1: If Γ is a topological space homeomorphic to a finite graph,
and ∂Γ ⊂ Γ is its 1−valent vertices while VΓ is the set of vertices of valence
greater than or equal to 2. Define Γ = Γ\∂Γ. A tropical curve is a topological
space Γ as defined above equipped with an inner complete metric.

Definition 2.2: An immersion h : Γ → A is called tropical if:
(a) For any edge e ⊂ Γ, a point x ∈ e and a unit tangent vector u ∈ Txe the
restriction h|e is a smooth map such that dhx(u) ∈ Λ ⊂ Th(x)A. We denote
dh(e) = dhx(u).
(b) (balancing condition)For any vertex v ∈ VΓ, Σv∈ēdh(e) where the orienta-
tion of e are chosen to be away from v.
A tropical immersion is locally flat if, in addition, for a collection of edges ej
adjacent to v has a 2−dimensional linear span by dh(ej) inside Λ⊗R. Moreover,
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the intersection h(Γ) ∩∆ ⊂ ∆ ⊂ A is called a locally flat tropical curve in
a polyhedral domain ∆.

Definition 2.3: A tropical immersion h : Γ → A is called primitive if
(a) The tropical curve Γ is connected, 3−valent with nonempty vertices set.
(b) For any edge e, dh(e) is a primitive element of the lattice Λ.
(c) x ̸= y ∈ Γ with h(x) = h(y) =⇒ x, y ∈ Γ\VΓ.
We call the image h(Γ) a primitive tropical curve in A.

Definition 2.4: Considering Γ∆ a topological space homeomorphic to a con-
nected graph, an immersion h∆ : Γ∆ → ∆ ⊂ A is called ∆−tropical if there is
a tropical immersion h : Γ → A such that Γ∆ ⊂ Γ and h|Γ∆ = h∆ with h−1(∂∆)
is a finite set disjoint from VΓ. A ∆−tropical immersion h∆ is primitive if h
can be chosen primitive and h−1(x) is a singleton for any x ∈ ∂∆. A subset
C ⊂ ∆ is a primitive tropical curve in ∆ if there exists a primitive ∆−tropical
immersion with C = h∆(Γ∆) ∩∆.

Definition 2.5: The boundary points a of primitive tropical curve C ⊂ ∆
are the points in ∂C = C ∩ ∂∆. Note that each boundary point belongs to a
unique (n − k)−dimensional face of the polyhedral domain ∆. We call k the
codimension of the boundary point. When k = 1 for x ∈ ∂C, ex is the edge
containing h−1(x), and δx ⊂ ∂∆ the face containing x. We define the bound-
ary momentum p(x) to be the tropical intersection number between h(ex)
and ∆x in A, which is the index of the sublattice generated by dh(ex) and the
elements of Λ parallel to ∆x in Λ.

Definition 2.6: A boundary point x ∈ ∆1 ∩ ∆2 of codimension 2 is called
a bissectrice if the boundary momenta δi = 1 for i = 1, 2 with ∆1 ∩∆2 giving
the codimension 2 facet where x lives in. δi’s are defined to be the boundary
momentum p(x) as x considered a point in ∆i.

Definition 2.7: A primitive tropical curve in ∆ is called even if
(a) all of its boundary points are of codimension at most 2.
(b) all of its codimension 1 boundary points have boundary momenta equal to
2.
(c) all of its codimension 2 boudnary points are bissectrice points.

Definition 2.8: The multiplicity of v is the area of the parallelogram spanned
by vectors dh(e1) and dh(e2)

m(v) = |dh(e1) ∧ dh(e2)|

The self-intersection number of v is defined by δ(v) = m(v)−1
2

Definition 2.9: We say that C ⊂ ∆ is Lagrangian realizable if there exists
a family of proper Lagrangian immersions vϵ : L → M∆ smoothly depending on
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an arbitrary small parameter ϵ > 0 with
(a) we have µ∆(vϵ(L)) ⊂ C ∪ Uϵ(VC), where VC are vertices of C and Uϵ de-
notes an ϵ−disk in the 2−dimensional affine subspace containing the 3 edges
containing x, which is valid by balancing condition. Furthermore, for any
x ∈ C\(Uϵ(VC) ∪ ∂C ∪Σ(C), L ∩ µ−1

∆ (x) is an affine subtorus of µ−1
∆ (x), where

Σ(C) is the self intersection set of C which can be proven to be finite.
(b) For every vertex v ∈ VΓ, (µ∆ ◦vϵ)−1(Uϵ(x)) is homeomorphic to the product
of a pair of pants with a subtorus Tn−2. In particular, we have a diffeomorphism
of pairs in a neighbourhood of v,

(µ−1
∆ (Uϵ(v)), (µ∆ ◦ vϵ)−1(Uϵ(x))) ∼= ((C∗)2, ϕv(Pδ(v)))× Tn−2

where ϕv : Pδ(v)) → (C∗)2 is an embbedding whose image is an irreducible
immersed rational holomorphic curve with 3 punctures and δ(v) ordinary nodes
of positive self-intersections, i.e. a pair of pants with δ(v) many nodes.

Theorem: Any even primitive tropical curve C in a Delzant polyhedral do-
main ∆ is Lagrangian realizable.

Instead of giving the proof of the theorem in full generality, we gives concrete
construction in dimension 4 and survey some examples in the remaining of the
notes.

3 Visible Lagrangians

We are going through some basic ideas of visible lagrangian submanifold in an
almost toric fibration.

Theorem-Definition: Consider the integrable Hamiltonian system H : Rn ×
Tn → Rn, H(p,q) = p where qi coordinates are modulo 2π and the symplectic
form is Σdpi∧dqi. Let L be a Lagrangian submanifold and H|L : L → Rn factor
as H|L = f ◦ g with g : L → K a bundle over a k−dimensional manifold K and
f : K → Rn an embedding. Then K is an affine linear subspace of Rn which
is rational with respect to the lattice 2πZn. Such Lagrangian submanifolds are
called visible.

3.1 visible Lagrangian cylinder

Now we take n = 2 and K the p1−axis. Then L ∩ H−1((p1, 0))) needs to
be a circle {(q1, θ)|θ ∈ [0, 2π]} for some fixed value q1. One can take L =
{(p1, 0, 0, q2) ∈ R2 × T 2}. Such cylinder can be constructed for any line in the
action domain.

3.2 Schoen-Wolfson cone

Now we restrict to the case when µ : X → R2 is the moment map of a
4−dimensional symplectic toric manifold. We want to know how the visible
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Lagrangian look like when the 1−dimensional affine submanifold K ⊂ R2 hits
a vertex of the image of the moment map.

Fix a pair of coprime positive integer (m,n) and consider the ray defined by
K = {(mt, nt)|t ≥ 0} ⊂ R2. The corresponding visible Lagrangian is called a
Schoen-Wolfson cone L(m,n) parameterized by

(s, t) 7→ 1√
m+ n

(t
√
meis

√
n/m, it

√
ne−is

√
m/n)

for x ∈ [0, 2π
√
mn] and t ≥ 0. Note that the image is a topological disk but

it is in general singular at the origin except for the case m = n = 1. Here we
identify the total space R4 as C2. This construction gives a visible Lagrangian
submanifold over the ray K away from the origin point.

3.3 (n,m)-pinwheel core

Next, we examine what L would look like when the projection sends L to a ray
K starts from a point on the edge of the moment polytope. The local model
of X is R × S1 × C, given by coordinates (p, q, z = x + iy) with symplectic
form dp ∧ dq + dx ∧ dy. The image of the moment map µ(p, q, z) = (p, 1

2 |z|
2)

is the upper half plane. We consider the ray defined {(ms, ns)|s ≥ 0}. We
take the Lagrangian immersion of the half cylinder (s, t) ∈ [0,∞) × S1 7→
(ms,−nt,

√
2nseimt) whose image under the moment map is the ray K. Note

that this immersion is an embedding away from s = 0 and is of degree n along the
circle s = 0. We call the image of the immersion a Lagrangian (n,m)−pinwheel
core.

3.4 Vanishing Thimble

When there’s a base node in the interior, considered locally as a focus-focus
critical value, at which an edge points in the eigendirection for the affine mon-
odromy of the base node. We invoke lemma 6.15 in Evans[2]:
Lemma: Let H : X → R2 be an integrable Hamiltonian system with a focus-
focus critical point at x. Let B be the set of regular values and B be its unversal
cover with I : B → R2 the developing map for the integral affine structure on
B coming from action coordinates. Let b ∈ R2 be the base node associated to
the focus-focus singularity x. Suppose l is a straight ray in R2 emanating from
b in an eigendirection for the affine monodromy around the critical value. Then
there’s a visible Lagrangian disk living over l.

This Lagrangian disk is called, similar to the situation in Picard-Lefshetz theory,
the vanishing thimble for the focus-focus singularity.
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4 Tropical Lagrangians in dimension 4

Before we summarize how to realize a tropical curve as a Lagrangian submani-
fold, one more key ingredient is needed-”the Lagrangian over a 3−valent vertex”.

Lemma: Consider the hyperKähler twist τ : R2 × T 2 → R2 × T 2 given by
(p1, p2, q1, q2) 7→ (p1, p2,−q2, q1). If C ⊂ R2 × T 2 is a complex curve with re-
spect to the complex structures induced by zk = xk + iyk, then the image of
τ(C) is a Lagrangian submanifold with respect to Σdpi ∧ d1i.

Now consider the complex curve C = {z2 = 1 + z1} ⊂ C∗ × C∗ ∼= R2 × T 2

which is diffeomorphic to a pair of pants, a 3-punctured sphere. We take the
parametrization z 7→ (z, 1+z) defined on C\{0,−1}. Then coordinate-wisely the
Lagrangian L is given by (p1, p2, q1, q2) = (ln|z|, ln|1 + z|,−arg(1 + z), arg(z)).

As |z| → 0, we have p2, q1 → 0, thus the Lagrangian L is modeled by the
visble Lagrangian cylinder L1 = {(p1, 0, 0, q2)|p1 < 0q2 ∈ [o, 2π]} as in section
3.1 near z = 0. Similar constructions as z → −1,∞ gives two other visible
Lagrangian cylinders

L2 := {(0, p2, q1, 0)|p2 > 0, q1 ∈ [0, 2π]}

L3 := {(p, p, p,−q)|p > 0, q ∈ [0, 2π]}

Next, we want to modify the Lagrangian submanifold L to L′ such that we
have K1 ∩ L′ = K1 ∩ L and U2 ∩ L′ = U2 ∩ (L1 ∪ L2 ∪ L3) for 0 < k1 < k2,
Ki = {p21 + p22 ≤ ki} and Ui = (C∗)2\Ki.

The modification near L1 starts with identifying a neighbourhood of L1 as
T ∗L1 via Weinstein neighbourhood theorem. In particular, L1 has coordinates
p1 = lnr and q2 = θ and the dual momenta, i.e. the cotangent coordinates, −q1
and p2. From Lagrangian condition we can extract

q1 = −arctan(
ep1sin(q2)

1 + ep1cos(q2)
)

p2 =
1

2
ln(1 + 2ep1cos(q2) + e2p1)

i.e. L1 is the graph of the 1−form

β =
1

2
ln(1 + 2ep1cos(q2) + e2p1dp1 + arctan(

ep1sin(q2)

1 + ep1cos(q2)
)dq2

In fact, β is both closed and exact. Thus, we can find a primitive ϕ(p1, q2) with
β = dϕ. Take ϵ > 0, we can pick a cut-off function ρ(p1) such that

ρ =

{
1 p1 ≤ −ln2− ϵ

0 p1 ≥ −ln2 + ϵ
(1)
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Here we take k1 = (ln2 − ϵ)2 and k2 = (ln2 + ϵ)2, then the graph Lagrangian
d(ρϕ) is the desired modification. We modify near L2 and L3 similarly. The
resulted Lagrangian pair of pants have cylinder ends Li’s outside a compact
subset. Note that we can make the compact subset arbitrarily small by flowing
backward along the radial Liouville vector field of R2 in the base. This con-
struction gives us:

Theorem(Mikhalkin): Let Γ be a tropical curve in R2 with only one ver-
tex v and 3 edges e1, e2, e3. For any ϵ > 0, there’s a embedded Lagrangian
submanifold L ⊂ R2 × T 2 diffeomorphic to the pair of pants such that U ∩L =
U ∩ (L1 ∪ L2 ∪ L3) where U is the complement of the ϵ-disk centered at v.

With this in hand, we can summarize to give an alphabet of tropical Lagrangian
as follows:

Tropical Curve Tropical Lagrangian

A trivalent vertex v
An immersed Lagrangian pair of
pants with δ(v) self-intersection

An edge A Lagrangian cylinder
A ray terminates at a vertex of
an ATF base diagram

A Schoen-Wolfson cone

A ray terminates at a codimen-
sion 1 boundary point of an ATF
base diagram

A (n,m)-pinwheel core

An edge termates at a base node
along the eigendirection of the
affine monodromy

A Lagrangian disk
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Example 4.1 (Lagrangian sphere): The picture below gives a tropical
curve with one vertex and 3 edges ending at the vertices of the moment poly-
tope of CP 2. We apply the above alphabet to construct the associated tropical
Lagrangian which is a topological 2−sphere with 2 singularities corresponding
2 the vertices (3, 0) and (0, 3).
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Example 4.2 (Lagrangian torus): This example gives a tropical curve
with 3 vertices where each vertex has 2 edges connecting with the other 2 ver-
tices and the remaining edge goes to the vertex of the moment polytope of CP 2.
Thus, each vertex gives a pair of pants and each edge reaching the vertex of the
polytope gives an Schoen-Wolfson cone. Again, only the left bottom cone is
nonsingular. Glued together, the tropical Lagrangian is a torus.
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Example 4.3 (Lagrangian Klein bottle): The tropical curve in this case
has one vertex and 1 edge going to the vertex of the moment polytope and 2
edges ending at the codimension 1 boundary point. The former edge corre-
sponds to a disk and the latter 2 edges are pinwheels diffemorphic to mobius
strip. Gluing along the boundary circles of the mobius strips to two ends of the
pair of pants and capping by the disk, we obtain a Lagrangian Klein bottle.

9



References

[1]Mikhalkin, G. (2019) Examples of tropical-to-Lagrangian correspondence. Eu-
ropean Journal of Mathematics, 5(3), 1033–1066. https://doi.org/10.1007/s40879-
019-00319-6.

[2]Evans Lectures on Lagrangian Torus fibrations. Cambridge University Press..

10


