535A SPRING 2023 PROBLEM SET #1

Problem 1 (Lee *first edition* 1-1). Let X be the set of all points $(x, y) \in \mathbb{R}^2$ such that $y = \pm 1$, and let M be the quotient of X by the equivalence relation generated by $(x, -1) \sim (x, 1)$ for all $x \neq 0$. Show that M is locally Euclidean and second countable, but not Hausdorff. (This space is called the *line with two origins*.)

Problem 2 (Lee *first edition* 1-2). Show that the disjoint union of uncountably many copies of \mathbb{R} is locally Euclidean and Hausdorff, but not second countable.

Problem 3 (Lee *first edition* 1-3). Let M be a nonempty topological manifold of dimension $n \geq 1$. If M has a smooth structure, show that it has uncountably many distinct ones. [Hint: Begin by constructing homeomorphisms from \mathbb{B}^n to itself that are smooth on $\mathbb{B}^n \setminus \{0\}$.]

Problem 4 (Lee first edition 1-5). Let $N=(0,\ldots,0,1)$ be the "north pole" in $\mathbb{S}^n\subset\mathbb{R}^{n+1}$, and let S=-N be the "south pole". Define stereographic projection $\sigma:\mathbb{S}^n\setminus\{N\}\to\mathbb{R}^n$ by

$$\sigma(x^1, \dots, x^{n+1}) = \frac{(x^1, \dots, x^n)}{1 - x^{n+1}}.$$

Let $\widetilde{\sigma}(x) = -\sigma(-x)$ for $x \in \mathbb{S}^n \setminus \{S\}$.

- (a) For any $x \in \mathbb{S}^n \setminus \{N\}$, show that $\sigma(x)$ is the point where the line through N and x intersects the linear subspace where $x^{n+1} = 0$, identified with \mathbb{R}^n in the obvious way. Similarly, show that $\widetilde{\sigma}(x)$ is the point where the line through S and x intersects the same subspace. (For this reason, $\widetilde{\sigma}$ is called *stereographic projection from the south pole.*)
- (b) Show that σ is bijective, and

$$\sigma^{-1}(u^1, \dots, u^n) = \frac{(2u^1, \dots, 2u^n, |u|^2 - 1)}{|u|^2 + 1}.$$

- (c) Compute the transition map $\tilde{\sigma} \circ \sigma^{-1}$ and verify that the atlas consisting of the two charts $(\mathbb{S}^n \setminus \{N\}, \sigma)$ and $(\mathbb{S}^n \setminus \{S\}, \tilde{\sigma})$ defines a smooth structure on \mathbb{S}^n . (The coordinates defined by σ or $\tilde{\sigma}$ are called *stereographic coordinates*.)
- (d) Show that this smooth structure is the same as the one defined in Example 1.20.