475 SPRING 2025 PROBLEM SET #7

Problem 1. Find the power series for $f(z) = z \cosh(z^2)$ centered at z = 0, and compute the radius of convergence.

Problem 2. Find the power series for $f(z) = \frac{z}{z^2 + 4}$ centered at z = 0, and compute the radius of convergence.

Problem 3. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that f(x) is real for all $x \in \mathbb{R}$. Let $\sum_{n=0}^{\infty} a_n z^n$ be the power series representation for f(z) centered at z = 0.

- (a) Explain why the radius of convergence is necessarily infinite.
- (b) Explain why all of the coefficients a_0, a_1, a_2, \ldots are necessarily real numbers.
- (c) Conclude that the real-valued function f(x) for $x \in \mathbb{R}$ has a real Taylor series centered at x = 0 with infinite radius of convergence.
- (d) Given an example of such an f(z) and compute its power series expansion centered at z = 0.
- (e) Give an example of a real-valued function f(x) which is everywhere differentiable but does *not* have a real Taylor series centered at x = 0 with infinite radius of convergence.

Problem 4. Show that for 0 < |z| < 4 we have

$$\frac{1}{4z - z^2} = \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^n}{4^{n+2}}$$

Problem 5. Find the Laurent series which represents the function $f(z) = z^2 \sin(1/z^2)$ in the domain $0 < |z| < \infty$.

Problem 6. Consider the function $f(z) = \frac{1}{z^2(1-z)}$.

- (a) Find the Laurent series which represents f(z) in the domain 0 < |z| < 1.
- (b) Find the Laurent series which represents f(z) in the domain $1 < |z| < \infty$.