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Problem 1. Let C' be the boundary of the square with vertices (£2,+2), oriented
counterclockwise. Evaluate the following integrals:
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Problem 2. Let C be the circle {|z — i| = 2}, oriented counterclockwise. Evaluate the
following integrals:
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Problem 3. Show that if f is analytic within and on a simple closed contour C' and zg
is not on C, then

dz

C 2~ 20

f’(z)dz_/ f(z)dz
c (

z—20)%

Problem 4. Suppose that f is a continuous function defined on a simple closed contour
C. Show that the function
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is analytic at each point z in the interior of C, and that
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at each such point.

Problem 5. Let C be the unit circle, oriented counterclockwise. Show that for each
a € R we have
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Then write this integral in terms of 6 in order to establish
™
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Problem 6. Let f be continuous on a closed bounded region R, and analytic on
nonconstant on the interior of R.

(a) If f(z) # 0 in R, show that |f(z)| has a minimum value in R, and that this
occurs on the boundary of R and not in the interior.

(b) Show that, without the assumption f(z) # 0, |f(z)| can achieve its minimum
value at an interior point.

Problem 7. Let f: C — C be an entire function whose real part u satisfies u(z) < 100
for all z € C. Prove that f must be constant.



