475 SPRING 2025 PROBLEM SET #11

Problem 1.

- (a) Consider the function $u : \mathbb{R}^2 \to \mathbb{R}$ given by $u(x, y) = \sin(x) \cosh(y)$. Show that u is harmonic. Find an analytic function $f : \mathbb{C} \to \mathbb{C}$ whose real part is u.
- (b) Consider the function $u : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ given by $u(x,y) = \frac{x}{x^2 + y^2}$. Show that u is harmonic. Find an analytic function $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ whose real part is u.

Problem 2. Find the solution to Laplace's equation on the unit disc $\{|z| = 1\}$ with Dirichlet boundary condition on the unit circle given by $\phi(e^{i\theta}) = \sin(3\theta)$.

Problem 3.

- (a) Let P(x, y) be a real polynomial in two variables having degree two, i.e. $P(x, y) = ax^2 + by^2 + cxy + dx + ey + f$ for some $a, b, c, d, e, f \in \mathbb{R}$. When is $P : \mathbb{R}^2 \to \mathbb{R}$ harmonic?
- (b) Now answer the same question but for real polynomials P(x, y) of degree three.

Problem 4. Find the image of the infinite strip $\{z = x + iy \mid 0 < y < 5\}$ under the transformation F(z) = 1/z. What is it geometrically?

Problem 5. Prove that the upper half space $\mathbb{H} := \{z = x + iy \mid y > 0\}$ is biholomorphic to the infinite strip $\{z = x + iy \mid 0 < y < 1\}$. *Hint: think about* $\log(z)$.

Problem 6. Prove that the function $F(z) = \frac{1+z}{1-z}$ defines a biholomorphism between the half disc

$$\{z = x + iy \mid x^2 + y^2 < 1, y > 0\}$$

and the first quadrant

$$\{z = x + iy \mid x > 0, y > 0\}$$

Problem 7. Let $SL(2, \mathbb{R})$ denote the set of 2-by-2 matrices with real entries and determinant equal to 1. Given $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R})$, we consider the corresponding linear fractional transformation¹ $T_A(z) = \frac{az+b}{cz+d}$. Verify the following features of linear fractional transformations:

- (a) T maps the upper half space \mathbb{H} to itself, i.e. $T: \mathbb{H} \to \mathbb{H}$
- (b) Given $A, B \in SL(2, \mathbb{R})$, we have $T_A \circ T_B = T_{AB}$, where AB is the matrix product of A and B.
- (c) Given $A \in SL(2, \mathbb{R})$, T_A is invertible, with inverse given by $T_{A^{-1}}(z)$. Hint: show that $T_{\mathbb{1}}(z) = z$, where $\mathbb{1}$ is the identity matrix, and use the previous part.
- (d) The maps F(z) = z + 1 and F(z) = -1/z are linear fractional transformations for certain choices of matrices in $SL(2, \mathbb{R})$.

¹These are also known as Möbius transformations.

475 SPRING 2025 PROBLEM SET #11

(e) The linear fractional transformation $T_A : \mathbb{H} \to \mathbb{H}$ has a fixed point, i.e. $z_0 \in \mathbb{H}$ such that $T_A(z_0) = z_0$, if and only if $-2 < \operatorname{tr}(A) < 2$, where $\operatorname{tr}(A)$ denotes the trace of the 2-by-2 matrix A.