Midterm 1

Math 125: Calculus I University of Southern California Fall 2022 Instructor: Kyler Siegel

Question:	1	2	3	4	Total
Points:	24	18	12	12	66
Score:					

1. Evaluate the following limits:
(I) (6 points)

$$
\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{x^{2}-3 x-4}
$$

Solution: Note that plugging in $x=4$ gives 0 for both the numerator and denominator, so this is inconclusive. However, we have

$$
\frac{x^{2}-4 x}{x^{2}-3 x-4}=\frac{x(x-4)}{(x-4)(x+1)},
$$

and hence we have

$$
\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{x^{2}-3 x-4}=\lim _{x \rightarrow 4} \frac{x}{x+1}=\frac{4}{5} .
$$

(II) (6 points)

$$
\lim _{x \rightarrow-2} \frac{2-|x|}{2+x}
$$

Solution: Since we are taking the limit $x \rightarrow-2$, we only care about x values which are less than 2 , and in this regime we have $|x|=-x$. So we have

$$
\lim _{x \rightarrow-2} \frac{2-|x|}{2+x}=\lim _{x \rightarrow-2} \frac{2+x}{2+x}=\lim _{x \rightarrow-2} 1=1 .
$$

(III) (6 points)

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1}{\sin (x)}
$$

Solution: Note that plugging in $x=0$ gives 0 for the numerator and denominator, so this is inconclusive. However, recall that we have

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

and

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}=0
$$

The first identity above is a little tricky to derive but we gave a proof in class and we've seen it many times. If you don't remember the second one, recall that it can be derived (from the first one) as follows:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}=\lim _{x \rightarrow 0} \frac{(\cos (x)-1)(\cos (x)+1)}{x(\cos (x)+1)} & =\lim _{x \rightarrow 0} \frac{\cos ^{2}(x)-1}{x(\cos (x)+1)} \\
& =\lim _{x \rightarrow 0} \frac{-\sin ^{2}(x)}{x(\cos (x)+1)} \\
& =-\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \frac{\sin (x)}{(\cos (x)+1)} \\
& =-\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \cdot \lim _{x \rightarrow 0} \frac{\sin (x)}{\cos (x)+1} \\
& =-1 \cdot 0=0
\end{aligned}
$$

Back to the task at hand, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos (x)-1}{\sin (x)} & =\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x} \lim _{x \rightarrow 0} \frac{x}{\sin (x)} \\
& =\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}\left(\lim _{x \rightarrow 0} \frac{\sin (x)}{x}\right)^{-1} \\
& =0 \cdot 1=0 .
\end{aligned}
$$

(IV) (6 points)

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x+1}-x\right)
$$

Solution: We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x+1}-x\right) & =\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+4 x+1}-x\right)\left(\sqrt{x^{2}+4 x+1}+x\right)}{\sqrt{x^{2}+4 x+1}+x} \\
& =\lim _{x \rightarrow \infty} \frac{\left(x^{2}+4 x+1\right)-x^{2}}{\sqrt{x^{2}+4 x+1}+x} \\
& =\lim _{x \rightarrow \infty} \frac{4 x+1}{\sqrt{x^{2}+4 x+1}+x} \\
& =\lim _{x \rightarrow \infty} \frac{4+1 / x}{\sqrt{1+4 / x+1 / x^{2}}+1} \\
& =\frac{4}{2}=2 .
\end{aligned}
$$

2. Compute the derivatives of the following functions:
(I) (6 points)

$$
\sin \left(\cos \left(x^{5}\right)\right)
$$

Put $f(x)=\sin (x)$ and $g(x)=\cos \left(x^{5}\right)$. By the chain rule we have

$$
\frac{d}{d x} \sin \left(\cos \left(x^{5}\right)\right)=f^{\prime}(g(x)) g^{\prime}(x)=\cos (g(x)) g^{\prime}(x)
$$

Using again the chain rule, we have $g^{\prime}(x)=\frac{d}{d x} \cos \left(x^{5}\right)=-\sin \left(x^{5}\right) \cdot 5 x^{4}$. Therefore we have

$$
\frac{d}{d x} \sin \left(\cos \left(x^{5}\right)\right)=-\cos \left(\cos \left(x^{5}\right)\right) \sin \left(x^{5}\right) \cdot 5 x^{4}
$$

(II) (6 points)

$$
\frac{x^{4}-1}{x^{4}+1}
$$

Solution: We use the quotient rule, with $f(x)=x^{4}-1$ and $g(x)=x^{4}+1$. So we have

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{x^{4}-1}{x^{4}+1}\right) & =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}} \\
& =\frac{4 x^{3}\left(x^{4}+1\right)-\left(x^{4}-1\right)\left(4 x^{3}\right)}{\left(x^{4}+1\right)^{2}} \\
& =\frac{4 x^{7}+4 x^{3}-4 x^{7}+4 x^{3}}{\left(x^{4}+1\right)^{2}} \\
& =\frac{8 x^{3}}{\left(x^{4}+1\right)^{2}}
\end{aligned}
$$

(III) (6 points)

$$
x^{5} \sqrt{x^{3}+1}
$$

Solution: We use the product rule with $f(x)=x^{5}$ and $g(x)=\sqrt{x^{3}+1}$. Note that by the chain rule we have $g^{\prime}(x)=\frac{1}{2 \sqrt{x^{3}+1}} \cdot 3 x^{2}$. So we have:

$$
\begin{aligned}
\frac{d}{d x}\left(x^{5} \sqrt{x^{3}+1}\right) & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
& =5 x^{4} \sqrt{x^{3}+1}+x^{5} \cdot \frac{3 x^{2}}{2 \sqrt{x^{3}+1}} \\
& =5 x^{4} \sqrt{x^{3}+1}+\frac{3 x^{7}}{2 \sqrt{x^{3}+1}} .
\end{aligned}
$$

It would be fine to leave this answer as is, or we could clean it up a little bit more as

$$
\frac{10 x^{4}\left(x^{3}+1\right)+3 x^{7}}{2 \sqrt{x^{3}+1}}=\frac{13 x^{7}+10 x^{4}}{2 \sqrt{x^{3}+1}}
$$

3. (12 points) Consider the curve $x^{2}+4 x y+y^{2}=13$. Find the equation of the tangent line at the point $(2,1)$. What is the equation of the normal line at the same point?

Solution: Using implicit differentiation, we get

$$
2 x+4 y+4 x \frac{d y}{d x}+2 y \frac{d y}{d x}=0 .
$$

Plugging in $(2,1)$ for (x, y), we have

$$
4+4+8 \frac{d y}{d x}+2 \frac{d y}{d x}=0
$$

and hence that slope of the tangent line at $(2,1)$ is

$$
\frac{d y}{d x}=-8 / 10=-4 / 5
$$

Therefore the equation of the tangent line at $(2,1)$ is

$$
(y-1)=-\frac{4}{5}(x-2)
$$

To get the normal line, we simply replace $-4 / 5$ with its negative reciprocal, namely $\frac{5}{4}$, so we get

$$
(y-1)=\frac{5}{4}(x-2)
$$

4. (12 points) Suppose that the volume of a cube is increasing at a rate of 30 cubic meters per second. How fast is the surfacea area increasing at the moment when the length of an edge is 5 meters?

Solution: Let x be the length of an edge of the cube. Then the volume is given by $V(x)=x^{3}$, and the surface area is given by $S(x)=6 x^{2}$ (recall that a cube has six faces, each of which is a square). We have

$$
\frac{d V}{d t}=3 x^{2} \frac{d x}{d t}
$$

and hence

$$
\frac{d x}{d t}=\frac{1}{3 x^{2}} \frac{d V}{d t}
$$

We then have

$$
\frac{d S}{d t}=12 x \frac{d x}{d t}=\frac{4}{x} \frac{d V}{d t}
$$

We are given $\frac{d V}{d t}=30$, so at the moment when $x=5$ we have

$$
\frac{d S}{d t}=\frac{4}{5} \cdot 30=24
$$

and this is given in square meters per second.

