
Final exam
Math 535a: Differential Geometry

University of Southern California Spring 2021
Instructor: Kyler Siegel

Instructions:

• You are allowed to use our main textbook Introduction to Smooth Manifolds by John Lee as much as
you wish, as well as the class notes, but you must not consult any other textbook and you must not
consult the internet or communicate with other people about any material related to this exam.

• You are welcome to type up with solutions in LaTeX, or write them by hand. Either way you should
strive to make your answers are clear, comprehensive, and legible as possible.

• If you have any pressing questions about the wording of a problem, you may email Kyler. He obviously
won’t be able to help with the actual content of any problem.

• At the top of your exam, please write your name, student id, and the following sentence: “I have
adhered to all of the above rules.”, followed by your signature.

• Good luck!!

Question: 1 2 3 4 5 Total

Points: 15 15 15 15 15 75

Score:

1. (15 points) Show that the two-form

xdy ∧ dz − ydx ∧ dz + zdx ∧ dy
(x2 + y2 + z2)3/2

on R3 \ {0} is closed but not exact. Hint: compute its integral over the unit two-sphere.

Solution: Let α denote the two-form at hand. Putting r =
√
x2 + y2 + z2, we have

∂x

( x
r3

)
= r−3 − 3x2r−5,

with similar expressions after replacing x by y or z. We therefore have

dα = (r−3 − 3x2r−5)dx ∧ dy ∧ dz − (r−3 − 3y2r−5)dy ∧ dx ∧ dz + (r−3 − 3z2r−5)dz ∧ dx ∧ dy
= (3r−3 − 3(x2 + y2 + z2)r−5)dx ∧ dy ∧ dz = 0.

To see that α is not exact, let ι : S2 → R3 denote the inclusion of the unit sphere. It suffices to show
that we have ∫

S2

ι∗α 6= 0.

Indeed, if we had α = dβ, then Stokes’ theorem would give∫
S2

ι∗α =

∫
S2

ι∗(dβ) =

∫
S2

dι∗(β) =

∫
∂S2

ι∗β = 0.



Let compute the integral in spherical coordinates

(x, y, z) = (sinφ cos θ, sinφ sin θ, cosφ),

where θ ∈ [0, 2π) measures the angle in the xy-plane and φ ∈ (0, π) measures the angle from the positive
z-axis. Strictly speaking this gives a parametrization of S2 minus the north and south poles, but that
makes no difference for the integral since this is a subset of full measure. We have

ι∗dx = cosφ cos θdφ− sinφ sin θdθ

ι∗dy = cosφ sin θdφ+ sinφ cos θdθ

ι∗dz = − sinφdφ

and therefore in (θ, φ) coordinates we have (after some simplifications)

ι∗α = − sinφdθ ∧ dφ. (1)

Now we can convert
∫
S2 ι
∗α into an ordinary multivariate integral. We have (at least up to a sign

depending on the orientation of S2, which makes no difference for us):∫
S2

ι∗α =

∫ φ=π

φ=0

∫ θ=2π

θ=0

sinφdθ ∧ dφ = −4π. (2)

2. (I) (5 points) Consider the homogeneous two variable polynomial

P (z1, z2) = zn1 + an−1z
n−1
1 z2 + · · ·+ a1z1z

n−1
2 + a0z

n
2

for some a0, . . . , an−1 ∈ C. Let F : CP1 → CP1 denote the smooth map given by

F ([z1 : z2]) = [P (z1, z2) : zn2 ].

For each regular point p ∈ CP1 of F , show that dFp : TpCP1 → TF (p)CP1 is orientation preserving. Use
this to compute the degree of F (in the sense of the last lecture).

Solution:

Let U = {[z : 1]} ⊂ CP1 be one of the standard charts for CP1, with complex coordinate z or
alternatively real coordinates x, y, where z = x+ iy. Note that F maps U to itself, and maps [0, 1]
to [0, 1]. With respect to the complex coordinate z we have F (z) = P (z). In particular, for any
p = [z : 1] ∈ U , dFp is identified with a complex linear map C → C, namely multiplication by
P ′(z). In particular, as a complex linear map, the real determinant is nonnegative.

Let q ∈ U be any regular value of P , which we can view also as a regular value of F . For each
p ∈ P−1(q), dFp is nonzero. By the fundamental theorem of algebra and the fact that q is a regular
value, we see that {p ∈ C | P (p) = q} has exactly n solutions. Therefore we have

deg(F ) =
∑

p∈P−1(q)

degp F = n.
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(II) (5 points) Let ω be a two-form on CP1. Show that we have∫
CP1

F ∗ω = n

∫
CP1

ω.

Solution: Note that ω ∈ Ω2(CP1) is automatically closed. Since deg(F ) = n, using the definition
of degree in terms of the induced map on top degree de Rham cohomology we have [F ∗ω] = n[ω] ∈
H2(CP1). As a corollary to Stokes’ theorem,

∫
CP1 F ∗ω depends only on the de Rham cohomology

class of F ∗ω, and hence we have ∫
CP1

F ∗ω =

∫
CP1

nω.

(III) (5 points) It turns out that the de Rham cohomology ring of CP2 is given by a truncated polynomial
ring: H∗(CP2) ∼= R[x]/x3, with |x| = 2. Assuming this, prove that there is no orientation reversing
diffeomorphism from CP2 to itself. Hint: what would be the induced map H4(CP2)→ H4(CP2)?

Solution: Suppose that F : CP2 → CP2 is a smooth map. Recall that the pullback F ∗ induces a
(graded) ring homomorphism on de Rham cohomology F ∗H∗(CP2)→ H∗(CP2). If F is moreover
a diffeomorphism, then this a ring isomorphism, and we have F ∗(x) = cx for some c ∈ R \ {0}, and
consequently we have

F ∗(x2) = F ∗(x) · F ∗(x) = c2x2.

It follows that F ∗ pull back positive volume forms to positive volume forms, i.e. it is orientation
preserving. We conclude that there is no orientation reversing diffeomorphism of CP2. Food for
thought: what about CP3?

3. (15 points) Let D ⊂ Rn be a compact subset which is the closure of an open subset with smooth boundary.
Prove the following identity for any f, g ∈ C∞(D):∫

D

(g∆f − f∆g) dV =

∫
∂D

(gN(f)− fN(g)) dS.

The notation is as follows:

• ∆f ∈ C∞(D) denotes the Laplacian
∑n
i=1 ∂

2
i f , and similarly for g

• N ∈ Γ(TD|∂D) denotes the unit outward normal vector field along the boundary of D

• N(f) ∈ C∞(∂D) denotes the directional derivative of f in the direction of N , and similarly for N(g)

• dV = dx1 ∧ · · · ∧ dxn denotes the standard volume form on Rn

• dS ∈ Ωn−1(∂D) denotes the induced volume form on ∂D, given by (dS)p(v1, . . . , vn−1) = (dV )p(Np, v1, . . . , vn−1)
for any v1, . . . , vn−1 ∈ Tp∂D.

Hint: apply Stokes’ theorem to the (n− 1)-form i(g∇f−f∇g)dV .
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Solution: Note: this is known as Green’s second identity. Following the hint, put

α := i(g∇f−f∇g)dV ∈ Ωn−1(D).

According to Stokes’ theorem, we have ∫
∂D

α|∂D =

∫
D

dα.

We can write the left hand side as ∫
∂D

(gi∇fdV − fi∇gdV )|∂D.

Along ∂D, we can write ∇f = 〈∇f,N〉N + X, where X is a vector field on ∂D (i.e. perpendicular to
N). Note that we have (iXdV )|∂D = 0. Indeed, given any input vectors v1, . . . , vn−1 ∈ Tp∂D, we have
iXdV (v1, . . . , vn−1) = dV (X, v1, . . . , vn−1) = 0 since the vectors X, v1, . . . , vn are necessarily linearly
dependent. Therefore, we have

(i∇fdV )|∂D = (i〈∇f,N〉NdV )|∂D = 〈∇f,N〉iNdV = N(f)dS.

Similarly, we have (i∇gdV )|∂D = N(g)dS, and hence∫
∂D

α|∂D =

∫
∂D

(gN(f)− fN(g))dS.

As for the right hand side, note that we have

dα = dg ∧ i∇fdV + gd(i∇fdV )− df ∧ i∇gdV − fd(i∇gdV ).

We have

dg ∧ i∇fdV = dg ∧ i∑n
i=1(∂if)∂i

dV

=

n∑
i=1

∂ifdg ∧ i∂idV

=

n∑
i=1

∂if∂igdx
i ∧ i∂idV

=

n∑
i=1

∂if∂igdV.

This is also equal to df ∧ i∇gdV by symmetry, so we have

dg ∧ i∇fdV − df ∧ i∇gdV = 0.

Meanwhile, we claim that d(i∇fdV ) = ∆fdV . Indeed, we have

d(i∇fdV ) = d(

n∑
i=1

∂ifi∂idV ) (3)

=

n∑
i=1

d(∂if)i∂idV (4)

=

n∑
i=1

∂2i fdx
i ∧ i∂idV (5)

=

n∑
i=1

∂2i fdV (6)

= (∆f)dV. (7)
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By symmetry, we also have d(i∇gdV ) = (∆g)dV . We therefore have
∫
D
dα =

∫
D

(g∆f − g∆f)dV , as
desired.

4. (I) (5 points) Consider the map F : Rn+1 → Rn+1 given by F (x1, . . . , xn+1) = (−x1, . . . ,−xn+1). Let
I : Sn → Sn be antipodal map, namely the restriction of F to the unit sphere. Prove that I is
orientation preserving if and only if n is odd.

Solution: Let pN = (0, . . . , 0, 1) and pS = I(pN ) = (0, . . . , 0,−1). It suffices to check that dIpN :
TpNS

n → TpSS
n is orientation preserving if and only if n is odd. Let U± ⊂ Sn denote the

subset of points with ±xn+1 > 0. We have graph coordinates (x1, . . . , xn) on U±, where xn+1 =
±
√

1−
∑n
i=1(xi)2. Using the orientation of the unit sphere as the boundary of the unit ball, we

see that one of these charts is positively oriented and the other is negatively oriented, and hence
it suffices to show that the corresponding Jacobian matrix DIpN has positive determinant if and
only if n is even. With respect to these coordinates, we have dIpN (∂xi) = −∂xi for i = 1, . . . n, and
hence the corresponding Jacobian determinant is (−1)n, as required.

(II) (5 points) Prove that RPn is orientable for n odd. Hint: starting with a volume form ω on Sn, show
that ω + I∗ω descends to a volume form on RPn.

Solution: Let ω be any volume form on Sn, and put α := ω + I∗ω. Then we have I∗α =
I∗ω + I∗I∗ω = α. Moreover, since I is orientation preserving for n odd, ω and I∗ω are both
volume forms inducing the same orientation on Sn, and hence α is also a volume form on Sn.
It follows that α descends to a volume form β on RPn. Indeed, let π : Sn → RPn denote the
projection map. Given q ∈ RPn and p ∈ π−1(q), and v1, . . . , vn ∈ TqRPn, we put β(v1, . . . , vn) :=
α(dπ−1p (v1), . . . , dπ−1p (vn)). Since α is invariant under I, it is easy to check that this is well-defined
and nowhere vanishing.

(III) (5 points) Prove that RPn is not orientable for n even. Hint: given a volume form on RPn, show that
its pullback to Sn is invariant under I, and therefore that I is orientation preserving.

Solution: Suppose by contradiction that β is a volume form on RPn. Then α := π∗β is a volume
form on Sn satisfying I∗α = α. In particular, this shows that I is orientation preserving, which is
not the case for n even.

5. Let G be a compact Lie group of dimension n, and let ω ∈ Ωn(G) be a volume form which is left-invariant,
i.e. L∗gω = ω for all g ∈ G, where Lg : G→ G denotes left multiplication.
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(I) (5 points) Show that R∗gω is also a left-invariant volume form for each g ∈ G. Here Rg : G→ G denotes
right multiplication by g. Conclude that for each g ∈ G we have R∗gω = ∆(g)ω for some ∆(g) ∈ R>0.

Solution: Since left and right multiplication commute, for any g, h ∈ G we have

L∗h(R∗gω) = (Rg ◦ Lh)∗ω = (Lh ◦Rg)∗ω = R∗gL
∗
hω = R∗gω. (8)

Recall that there is a unique left-invariant n-form on G up to scaling. Indeed, for each g ∈ G, ωg
is uniquely determined by ωe via the relation ωg = L∗g−1ωe, and ωe can be any chosen element of

Λn(T ∗eG) (c.f. Haar measure). In particular, we have R∗gω = Cω for some nonzero constant C,
which we denote by ∆(g). Since ∆ : G→ R is continuous and never zero, and clearly ∆(e) = 1, it
follows that ∆(g) is positive for all g ∈ G.

(II) (5 points) Show that ∆ : G → R>0 is a Lie group homomorphism. Conclude that we must have
∆(g) = 1 for all g ∈ G, and therefore that ω also right invariant.

Solution: Note that we have ∆(g) =
∫
G
R∗gω/

∫
G
ω, and it follows that ∆ is smooth. To see that

∆ is a group homomorphism, note that for any g, h ∈ G we have ∆(gh)ω = R∗ghω = (Rh ◦Rg)∗ω =
R∗gR

∗
hω = R∗g(∆(h)ω) = ∆(h)∆(g)ω, and hence we have ∆(gh) = ∆(g)∆(h).

Since ∆ : G→ R>0 is continuous and G is compact, the image must be compact. Since the image
is also a subgroup pf R>0, it must be {1}, and hence we have ∆ ≡ 1. Therefore for any g ∈ G we
have R∗gω = ω, i.e. ω is right invariant.

(III) (5 points) Now let i : G→ G denote the inversion map, i.e. i(g) = g−1. Show that we have i∗ω = ±ω.
Using this, prove that we have ∫

G

(f ◦ i)ω = ±
∫
G

fω

for any f ∈ C∞(G). Hint: show that i∗ω is right-invariant.

Solution: Note that we have i ◦Rg = Lg−1 ◦ i. Therefore we have

R∗gi
∗ω = (i ◦Rg)∗ω = (Lg−1 ◦ i)∗ω = i∗L∗g−1ω = i∗ω. (9)

This shows that i∗ω is right invariant. Since ω is also right invariant, we must have i∗ω = Cω for
some constant. Then we have

ω = (i ◦ i)∗ω = i∗Cω = C2ω,

and hence C = ±1, whence i∗ω = ±ω.

Finally, by the pullback formula for integrals have∫
G

fω = ±
∫
G

(f ◦ i)i∗ω =

∫
G

(f ◦ i)ω.
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Note that the signs cancel since i∗ω = ω if i is orientation-preserving, otherwise i∗ω = −ω if i is
orientation-reversing. A simple example to think about is Tn, where ω = dθ1 ∧ · · · ∧ dθn and the
inversion map i(θ1, . . . , θn) = (−θ1, . . . ,−θn) is orientation-preserving if and only if n is even.
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