Midterm exam
 Math 535a: Differential Geometry

1. (20 points) Let M be a smooth manifold which is compact. Prove that there is no smooth submersion from M to \mathbb{R}^{n} for any $n \geq 1$. Hint: show that such a submersion would necessarily be an open map, and recall that \mathbb{R}^{n} is connected.

Solution: Suppose by contradiction that $F: M \rightarrow \mathbb{R}^{n}$ is a smooth submersion, and put $m=\operatorname{dim}(M)$. Note that $\operatorname{im}(F) \subset \mathbb{R}^{n}$ is compact, since M is compact and F is continuous, and continuous maps send compact subsets to compact subsets. In particular, $\operatorname{im}(F) \subset \mathbb{R}^{n}$ is closed, since \mathbb{R}^{n} is Hausdorff and compact subsets of Hausdorff spaces are closed.
We claim that $\operatorname{im}(F) \subset \mathbb{R}^{n}$ is also open, meaning that $\operatorname{im}(F) \subset \mathbb{R}^{n}$ is both closed and open. Since \mathbb{R}^{n} is connected, the only nonempty closed and open subset is \mathbb{R}^{n} itself, but F cannot be surjective since $\operatorname{im}(F)$ is compact (whereas \mathbb{R}^{n} for $n \geq 1$ is not compact), so this gives the desired contradiction.
To justify the above claim, we can invoke the Rank Theorem. Given $q \in \operatorname{im}(F)$, we must show that there exists an open neighborhood of q in \mathbb{R}^{n} which is contained in $\operatorname{im}(F)$. Given any fixed $p \in F^{-1}(\{q\})$, we can find a smooth chart (U, ϕ) for M centered at p and a smooth chart (V, ψ) for \mathbb{R}^{n} centered at q such that $F(U) \subset V$ and we have

$$
\left.\psi \circ F \circ \phi^{-1}\right|_{\phi(U)}\left(x^{1}, \ldots, x^{m}\right)=\left(x^{1}, \ldots, x^{n}\right)
$$

(note that $m \geq n$ since F is a submersion). Since $\phi(U) \subset \mathbb{R}^{m}$ is an open neighborhood of $\phi(p)=0$, we can find open neighborhoods A, B of 0 in $\mathbb{R}^{n}, \mathbb{R}^{m-n}$ respectively such that the Cartesian product $A \times B \subset$ $\mathbb{R}^{n} \times \mathbb{R}^{m-n}$ is an open neighborhood of 0 which is contained in $\phi(U)$. Then $\operatorname{im}\left(\left.\psi \circ F \circ \phi^{-1}\right|_{A \times B}\right)=A$, and therefore we have $\psi^{-1}(A) \subset \operatorname{im}(F)$. Since $\psi^{-1}(A) \subset \mathbb{R}^{n}$ is an open neighborhood of q contained in $\operatorname{im}(F)$, this justifies the claim.
2. (20 points) Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth map for some $n \geq 1$. Let

$$
\operatorname{Gr}(F):=\left\{(a, b) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \mid b=F(a)\right\} \subset \mathbb{R}^{2 n}
$$

denote its graph, and let

$$
\Delta:=\left\{(a, b) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \mid a=b\right\} \subset \mathbb{R}^{2 n}
$$

denote the diagonal. Under what conditions on F do $\operatorname{Gr}(F)$ and Δ intersect transversely as submanifolds of $\mathbb{R}^{2 n}$?

Solution: We will give the answer for any smooth map $F: M \rightarrow M$ where M is a smooth manifold. Firstly, a point $(a, b) \in M \times M$ lies in $\operatorname{Gr}(F) \cap \Delta$ if and only if $b=F(a)=a$. In other words, the intersection points are in bijective correspondence with the fixed points of F.
The tangent space $T_{(a, b)}(M \times M)$ is naturally isomorphic to $T_{a} M \times T_{b} M$, and the tangent spaces $T_{(a, b)} \operatorname{Gr}(F)$ and $T_{(a, b)} \Delta$ are naturally viewed as subspaces of $T_{(a, b)}(M \times M)$. To identify these, note that Δ is the image of the smooth embedding $G: M \rightarrow M \times M$ defined by $G(p)=(p, p)$, hence $d G_{p}(v)=(v, v)$, so we have

$$
T_{(a, a)} \Delta=\left\{(v, w) \in T_{a} M \times T_{a} M \mid v=w\right\}
$$

Similarly, $\operatorname{Gr}(F)$ is the image of the smooth embedding $H: M \rightarrow M \times M$ defined by $H(p)=(p, F(p))$, hence $d H_{p}(v)=\left(v, d F_{p}(v)\right)$, so we have

$$
T_{(a, F(a))} \operatorname{Gr}(F)=\left\{(v, w) \in T_{a} M \times T_{F(a)} M \mid w=d F_{a}(v)\right\}
$$

An intersection point $(a, b) \in \operatorname{Gr}(F) \cap \Delta$ is transverse if and only if we have

$$
T_{(a, b)} \Delta \cap T_{(a, b)} \operatorname{Gr}(F)=\{0\} \subset T_{a} M \times T_{b} M
$$

This fails if and only if there is some $v \in T_{a} M$ such that $v=d F_{a} v$, i.e. $d F_{a}$ has 1 as an eigenvalue. In summary, $\operatorname{Gr}(F)$ and Δ intersect transversely if and only if for each fixed point p of $F, d F_{p}: T_{p} M \rightarrow$ $T_{p} M$ does not have 1 as an eigenvalue.
Aside: a fixed point whose differential does not have 1 as an eigenvalue is called nondegenerate, and these play a fundamental role in fixed point theory and dynamics. A typical goal is to give an a priori lower bound on the number of fixed points of a map $F: M \rightarrow M$. The case of all fixed points being nondegenerate is usually the best case scenario for obtaining such a lower bound, whereas degenerate fixed points sometimes ought to count as multiple fixed points, in the same way that the root of $f(x)=x^{3}$ should really count as three roots.
3. (15 points) Prove that $\left\{x^{3}-y^{3}+x y z-x y=1\right\}$ is a smooth submanifold of \mathbb{R}^{3}. Describe the tangent space at the point $(1,0,2)$.

Solution: We appeal to the Regular Level Set Theorem. Put $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $F(x, y, z)=$ $x^{3}-y^{3}+x y z-x y$. Then we have

$$
D F_{(x, y, z)}=\left(\begin{array}{lll}
3 x^{2}+y z-y & -3 y^{2}+x z-x & x y
\end{array}\right)
$$

The point (x, y, z) is a critical point if and only if this matrix vanishes, which corresponds to the system

$$
\begin{cases}3 x^{2}+y z-y & =0 \\ -3 y^{2}+x z-x & =0 \\ x y & =0\end{cases}
$$

For any solution it is easy to see that we must have $x=y=0$, and then z is unconstrained. We have $F(0,0, z)=0$, so 0 is a critical value and all other values are regular values. In particular, 1 is a regular value, so $S:=F^{-1}(1)$ is a smoothly embedded submanifold of \mathbb{R}^{3}.
Put $p:=(1,0,2)$. We describe the tangent space $T_{p} S$ as a subspace of $T_{p} \mathbb{R}^{3}=\mathbb{R}\left\langle\left.\frac{\partial}{\partial x}\right|_{p},\left.\frac{\partial}{\partial y}\right|_{p},\left.\frac{\partial}{\partial z}\right|_{p}\right\rangle$. Recall that we have $T_{p} S=\operatorname{ker}\left(d F_{p}\right)$. Specializing the above computation to p, we have

$$
D F_{p}=\left(\begin{array}{lll}
3 & 1 & 0
\end{array}\right),
$$

and hence

$$
T_{p} S=\left\{\left.\left.a \frac{\partial}{\partial x}\right|_{p}+\left.b \frac{\partial}{\partial y}\right|_{p}+\left.c \frac{\partial}{\partial z}\right|_{p} \right\rvert\, a, b, c \in \mathbb{R}, 3 a+b=0\right\}
$$

4. (20 points) Prove that the map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{5}$ given in projective coordinates by

$$
F([x: y: z])=\left[x^{2}: y^{2}: z^{2}: y z: x z: x y\right]
$$

is a smooth embedding.

Solution: Since $\mathbb{R P}^{2}$ is compact, it suffices to show that F is a smooth injective immersion, since then it is automatically a smooth embedding. Let us first check that F is an injective map. Suppose that we have

$$
\left[x_{1}^{2}: y_{1}^{2}: z_{1}^{2}: y_{1} z_{1}: x_{1} z_{1}: x_{1} y_{1}\right]=\left[x_{2}^{2}: y_{2}^{2}: z_{2}^{2}: y_{2} z_{2}: x_{2} z_{2}: x_{2} y_{2}\right]
$$

i.e.

$$
\left(x_{1}^{2}, y_{1}^{2}, z_{1}^{2}: y_{1} z_{1}, x_{1} z_{1}, x_{1} y_{1}\right)=\lambda \cdot\left(x_{2}^{2}, y_{2}^{2}, z_{2}^{2}: y_{2} z_{2}, x_{2} z_{2}, x_{2} y_{2}\right)
$$

for some $\lambda \in \mathbb{R} \backslash\{0\}$. Evidently we must have $\lambda>0$, and hence we have $x_{1}=a x_{2} \sqrt{\lambda}, y_{1}=b y_{2} \sqrt{\lambda}$, and $z_{1}=c z_{2} \sqrt{\lambda}$ for some $a, b, c \in\{1,-1\}$.
Suppose first that $x_{1}=y_{1}=0$. Then we have $x_{2}=y_{2}=0$ and hence $\left[x_{1}: y_{1}: z_{1}\right]=[0: 0: 1]=\left[x_{2}\right.$: $\left.y_{2}: z_{2}\right]$. Similarly, if $x_{1}=z_{1}=0$ or $y_{1}=z_{1}=0$, then we must have $\left[x_{1}: y_{1}: z_{1}\right]=\left[x_{2}: y_{2}: z_{2}\right]$.
Now suppose that $x_{1}=0$ but y_{1} and z_{1} are nonzero. Then y_{2} and z_{2} are also nonzero and from $y_{1} / y_{2}=\lambda z_{2} / z_{1}$ we see that $b=c$, and hence

$$
\left[x_{1}: y_{1}: z_{1}\right]=\left[0: y_{1}: z_{1}\right]=\left[0: b y_{2} \sqrt{\lambda}: b z_{2} \sqrt{\lambda}\right]=\left[0: y_{2}: z_{2}\right]
$$

Similarly, the same is true if we assume y_{1} is zero but x_{1}, z_{2} are nonzero, or if z_{1} is zero but x_{1}, y_{1} are nonzero.
Finally, suppose that x_{1}, y_{1}, z_{1} are nonzero. Then the same is true for x_{2}, y_{2}, z_{2}, and we have that x_{1} / x_{2}, y_{1} / y_{2}, and z_{1} / z_{2} all have the same sign, i.e. $a=b=c$, and hence we have

$$
\left[x_{1}: y_{1}: z_{1}\right]=\left[a x_{2} \sqrt{\lambda}: a y_{2} \sqrt{\lambda}: a z_{2} \sqrt{\lambda}\right]=\left[x_{2}: y_{2}: z_{2}\right] .
$$

To see that F is a smooth immersion, let $\left(U_{i}, \phi_{i}\right), i=1,2,3$ denote the standard coordinate charts on \mathbb{R}^{2}, where U_{i} consists of all points $\left[x^{1}: x^{2}: x^{3}\right]$ such that $x^{i} \neq 0$ and $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ sends $\left[x^{1}: x^{2}: x^{3}\right]$ to the result after omitting the ith coordinate and dividing the remaining coordinates by x^{i}. Similarly, let $\left(V_{i}, \psi_{i}\right), i=1, \ldots, 6$ denote the analogous standard coordinate charts on $\mathbb{R P}^{5}$.
Observe that $F\left(U_{1}\right) \subset V_{1}$, and we have $\psi_{1} \circ F \circ \phi_{1}^{-1}(a, b)=\psi_{1}\left(\left[1: a^{2}: b^{2}: a b: b: a\right]\right)=\left(a^{2}, b^{2}, a b, b, a\right)$. This is a polynomial function, hence smooth, and its Jacobian is the transpose of

$$
\left(\begin{array}{ccccc}
2 a & 0 & b & 0 & 1 \\
0 & 2 b & a & 1 & 0
\end{array}\right),
$$

which has rank two for any $a, b \in \mathbb{R}$, hence $\left.F\right|_{U_{1}}$ is an immersion. Note that if we permute the components of $[x: y: z]$, then $F([x: y: z])$ changes only by permuting its components, i.e. by postcomposing by a diffeomorphism of $\mathbb{R} \mathbb{P}^{5}$. Since the latter does not affect whether a map is an immersion, this shows that $\left.F\right|_{U_{2}}$ and $\left.F\right|_{U_{3}}$ are also immersions, and hence F itself is an immersion.
Note: this map F is called the Veronese embedding. It can be generalized to an embedding of any \mathbb{R}^{m} into $\mathbb{R P}^{n}$ for some n, where the components are all possible monomials of a given degree d.
5. (25 points) Let M be a smoothly embedded m-dimensional submanifold of \mathbb{R}^{n} for some $1 \leq m<n$. For each $d<n-m$, prove that there exists a d-dimensional affine subspace of \mathbb{R}^{n} which is disjoint from M. Is the same true if $d=n-m$?

Solution: We consider affine subspaces S_{c} of \mathbb{R}^{n} of the form $\mathbb{R}^{d} \times\{c\}$ for $c \in \mathbb{R}^{n-d}$. Then S_{c} intersects M if and only if c lies in the image of the projection map $\pi: M \rightarrow \mathbb{R}^{n-d}$ onto the last $n-d$ components. By assumption $n-d>m$, and hence every point in M is a critical point of π, and hence by Sard's
theorem the image of π has measure zero. In particular, π is not surjective, so we can indeed find $c \in \mathbb{R}^{n-d} \backslash \operatorname{im}(\pi)$.
In the case $d=n-m$, this argument does not go through. For example in the case $n=2$ and $d=m=1$, consider the image M of the smooth embedding $\mathbb{R} \rightarrow \mathbb{R}^{2}, t \mapsto\left(e^{t} \cos (t), e^{t} \sin (t)\right) . M$ is a spiral, and it intersects every affine line in \mathbb{R}^{2}. Indeed, let $L \subset \mathbb{R}^{2}$ be some affine line, and let $v \in \mathbb{R}^{2} \backslash\{0\}$ be a vector pointing in a direction orthogonal to L. We can $t_{1} \in \mathbb{R}$ such that $\left(e^{t_{1}} \cos \left(t_{1}\right), e^{t_{1}} \sin \left(t_{1}\right)\right)$ is an arbitrarily large positive multiple of v, and we can also find t_{2} such that $\left(e^{t_{2}} \cos \left(t_{2}\right), e^{t_{2}} \sin \left(t_{2}\right)\right)$ is an arbitrarily large negative multiple of v. Using the Intermediate Value Theorem applied to the projection to along L, it follows that M must intersect L.

