
Midterm 1
Math 434: Geometry and transformations
University of Southern California Fall 2022

Instructor: Kyler Siegel

Question: 1 2 3 4 Total

Points: 11 10 18 14 53

Score:

1. (I) (4 points) Let f : C → C be counterclockwise rotation by angle θ ∈ [0, 2π) about the point z0 ∈ C.
Write a formula for f(z).

Solution: Let T (z) = z − z0 and R(z) = eiθz. Then we have

f(z) = T−1(R(T (z))) = T−1(eiθ(z − z0)) = eiθ(z − z0) + z0.

(II) (4 points) Let g : C → C be reflection about the line passing through 0 and 1 + i. Write a formula for
g(z).

Solution: Note that the line makes angle π/4 with the real axis. Let R(z) = e−iπ/4z. Let S(z) = z
be the reflection about the real axis. Then we have

g(z) = R−1(S(R(z)) = R−1(eiπ/4z) = eiπ/2z = iz.

(III) (3 points) Let h : C → C be the inversion about the circle with center i and radius 1. What is h(1+ i)?

Solution: Since 1 + i lies on C, we have h(1 + i) = 1 + i.

2. (I) (5 points) Consider the map f : R2 → R2 given by f(x, y) = (x + ay + 2, by + 3) for some real
constants a, b ∈ R. For which a, b is this a Euclidean isometry?

Solution: This map is of the form (
x
y

)
= A

(
x
y

)
+B,



where

A =

(
1 a
0 b

)
and

B =

(
2
3

)
.

We have seen that this is a Euclidean isometry if and only if A is an orthogonal matrix, i.e. ATA = I,
or equivalently the columns of A are orthonormal. Note that (a, b) is orthogonal to (1, 0) if and
only if a = 0. So we must have a = 0 and b = ±1.

(II) (5 points) Describe all Euclidean isometries g : R2 → R2 such that g(0, 0) = (0, 0) and g(1, 0) = (−1, 0).

Solution: Any Euclidean isometry fixing (0, 0) is of the form(
x
y

)
7→ A

(
x
y

)
,

where A =

(
a b
c d

)
is an orthogonal 2 × 2 matrix. Since g(1, 0) = (−1, 0), we must have a = −1

and c = 0. As in the previous problem, we then have b = 0 and d = ±1. In the first case,
(x, y) 7→ (−x, y) corresponds to reflection about the y-axis. In the second case, (x, y) 7→ (−x,−y)
corresponds to rotation by π about the origin.

3. (I) (4 points) Let C ⊂ C be the unit circle centered at the origin, and let ιC : C+ → C+ be its inversion.
What is ιC(i/2)?

Solution: Recall that ιC(z) =
1
z . We could derive this by remembering that ιC(re

iθ) = seiθ, where
s is such that rs = 1. So we have

ιC(re
iθ) = 1

r e
iθ = 1

z .

with z = reiθ.

So ιC(i/2) = (i/2)−1 = (−i/2)−1 = −2/i = 2i.

(II) (5 points) Write a formula for a hyperbolic transformation f : D → D sending i/2 to 0 and −i to 1.
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Solution: We can view f as a Möbius transformation C+ → C+ which maps D to itself. Since f
fixes the unit circle S1

∞, it must send ιS1
∞
(i/2) to ιS1

∞
(0) = ∞. By the previous part, this means

we have f(2i) = ∞. So we seek a Möbius transformation f : C+ → C+ such that f(i/2) = 0,
f(2i) = ∞, and f(−i) = 1. This is given by the cross ratio:

f(z) =
(z − i/2)(−3i)

(z − 2i)(−3i/2)
=

2(z − i/2)

(z − 2i)
.

(III) (3 points) Describe the hyperbolic line in D2 connecting 1
3 + i

3 and 1
2 + i

2 .

Solution: Both of these lie on the Euclidean line {x+ iy ∈ C | x = y}. Since this passes through
the origin and hence intersects S1

∞ in right angles, we find that

{x+ iy ∈ D | x = y}

is the unique hyperbolic line connecting 1
3 + i

3 and 1
2 + i

2 .

(IV) (3 points) What is the hyperbolic distance between 1
3 + i

3 and 1√
2
+ i√

2
?

Solution: Observe that the second point lies on the circle at infinity, since its modulus is 1. The
first point has modulus less thn 1 and hence lies in D. Therefore the distance is infinite.

(V) (3 points) Give an example of a hyperbolic geodesic which is not a Euclidean geodesic.

Solution: Recall that a hyperbolic geodesic is just a hyperbolic line, i.e. a distance minimizing
path. Given any circle C which intersects the unit circle S1

∞ at right angles, C ∩D is a hyperbolic
geodesic. For example, we could consider a circle centered at x with radius r, and try to find
conditions which make this perpendicular to S1

∞.

As a less computational approach, we could simply apply any hyperbolic transformation to the real
axis (intersected with D) to get a new hyperbolic line, and then check that it isn’t a Euclidean
straight line. For example, we could use

f(z) =
2(z − i/2)

z − 2i
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from above. Then the image is {
2(x− i/2)

(x− 2i)
| x ∈ (−1, 1)

}
.

Note that this is not a Euclidean geodesic, 2(x−i/2)
x−2i since is never ∞ for x ∈ R ∪ {∞}.

4. (I) (4 points) Find a formula for a Möbius transformation f : C+ → C+ such that f(1) = 0, f(2) = 1,
and f(3) = ∞.

Solution: This is simply given by a cross ratio:

f(z) =
(z − 1)(2− 3)

(z − 3)(2− 1)
=

−(z − 1)

(z − 3)
=

−z + 1

z − 3
.

(II) (3 points) What is f(∞)?

Solution: In general, for the value of az+b
cz+d at ∞ is a/c. In our case we have f(∞) = −1.

(III) (4 points) What is the inverse map f−1 : C+ → C+?

Solution:

The corresponding matrix is (
−1 1
1 −3

)
,

so its inverse is given by

1
2 ·

(
−3 −1
−1 −1

)
=

(
−3/2 −1/2
−1/2 −1/2

)
Therefore the inverse Möbius transformation is

f−1(z) =
−3z/2− 1/2

−z/2− 1/2
=

3z + 1

z + 1
.
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(IV) (3 points) What is the image of the real axis under f?

Solution: Since f sends 1, 2, 3 to 0, 1,∞ respectively, it must send the unique cline joining 1, 2, 3
to the unique cline joining 0, 1,∞. In other words, it sends the real axis to the real axis. (This is
also easy to see from the formula, since −x+1

x−3 is always real if x is.)
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