Midterm 1
 Math 434: Geometry and transformations University of Southern California Fall 2022
 Instructor: Kyler Siegel

Question:	1	2	3	4	Total
Points:	11	10	18	14	53
Score:					

1. (I) (4 points) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be counterclockwise rotation by angle $\theta \in\left[0,2 \pi\right.$) about the point $z_{0} \in \mathbb{C}$. Write a formula for $f(z)$.

Solution: Let $T(z)=z-z_{0}$ and $R(z)=e^{i \theta} z$. Then we have

$$
f(z)=T^{-1}(R(T(z)))=T^{-1}\left(e^{i \theta}\left(z-z_{0}\right)\right)=e^{i \theta}\left(z-z_{0}\right)+z_{0} .
$$

(II) (4 points) Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be reflection about the line passing through 0 and $1+i$. Write a formula for $g(z)$.

Solution: Note that the line makes angle $\pi / 4$ with the real axis. Let $R(z)=e^{-i \pi / 4} z$. Let $S(z)=\bar{z}$ be the reflection about the real axis. Then we have

$$
g(z)=R^{-1}\left(S(R(z))=R^{-1}\left(e^{i \pi / 4} \bar{z}\right)=e^{i \pi / 2} \bar{z}=i \bar{z} .\right.
$$

(III) (3 points) Let $h: \mathbb{C} \rightarrow \mathbb{C}$ be the inversion about the circle with center i and radius 1 . What is $h(1+i)$?

Solution: Since $1+i$ lies on C, we have $h(1+i)=1+i$.
2. (I) (5 points) Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=(x+a y+2, b y+3)$ for some real constants $a, b \in \mathbb{R}$. For which a, b is this a Euclidean isometry?

Solution: This map is of the form

$$
\binom{x}{y}=A\binom{x}{y}+B
$$

where

$$
A=\left(\begin{array}{ll}
1 & a \\
0 & b
\end{array}\right)
$$

and

$$
B=\binom{2}{3}
$$

We have seen that this is a Euclidean isometry if and only if A is an orthogonal matrix, i.e. $A^{T} A=I$, or equivalently the columns of A are orthonormal. Note that (a, b) is orthogonal to $(1,0)$ if and only if $a=0$. So we must have $a=0$ and $b= \pm 1$.
(II) (5 points) Describe all Euclidean isometries $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $g(0,0)=(0,0)$ and $g(1,0)=(-1,0)$.

Solution: Any Euclidean isometry fixing $(0,0)$ is of the form

$$
\binom{x}{y} \mapsto A\binom{x}{y}
$$

where $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is an orthogonal 2×2 matrix. Since $g(1,0)=(-1,0)$, we must have $a=-1$ and $c=0$. As in the previous problem, we then have $b=0$ and $d= \pm 1$. In the first case, $(x, y) \mapsto(-x, y)$ corresponds to reflection about the y-axis. In the second case, $(x, y) \mapsto(-x,-y)$ corresponds to rotation by π about the origin.
3. (I) (4 points) Let $C \subset \mathbb{C}$ be the unit circle centered at the origin, and let $\iota_{C}: \mathbb{C}_{+} \rightarrow \mathbb{C}_{+}$be its inversion. What is $\iota_{C}(i / 2)$?

Solution: Recall that $\iota_{C}(z)=\frac{1}{\bar{z}}$. We could derive this by remembering that $\iota_{C}\left(r e e^{i \theta}\right)=s e^{i \theta}$, where s is such that $r s=1$. So we have

$$
\iota_{C}\left(r e^{i \theta}\right)=\frac{1}{r} e^{i \theta}=\frac{1}{\bar{z}} .
$$

with $z=r e^{i \theta}$.
So $\iota_{C}(i / 2)=(\bar{i} / 2)^{-1}=(-i / 2)^{-1}=-2 / i=2 i$.
(II) (5 points) Write a formula for a hyperbolic transformation $f: \mathbb{D} \rightarrow \mathbb{D}$ sending $i / 2$ to 0 and $-i$ to 1 .

Solution: We can view f as a Möbius transformation $\mathbb{C}_{+} \rightarrow \mathbb{C}_{+}$which maps \mathbb{D} to itself. Since f fixes the unit circle S_{∞}^{1}, it must send $\iota_{S_{\infty}^{1}}(i / 2)$ to $\iota_{S_{\infty}^{1}}(0)=\infty$. By the previous part, this means we have $f(2 i)=\infty$. So we seek a Möbius transformation $f: \mathbb{C}_{+} \rightarrow \mathbb{C}_{+}$such that $f(i / 2)=0$, $f(2 i)=\infty$, and $f(-i)=1$. This is given by the cross ratio:

$$
f(z)=\frac{(z-i / 2)(-3 i)}{(z-2 i)(-3 i / 2)}=\frac{2(z-i / 2)}{(z-2 i)}
$$

(III) (3 points) Describe the hyperbolic line in \mathbb{D}^{2} connecting $\frac{1}{3}+\frac{i}{3}$ and $\frac{1}{2}+\frac{i}{2}$.

Solution: Both of these lie on the Euclidean line $\{x+i y \in \mathbb{C} \mid x=y\}$. Since this passes through the origin and hence intersects S_{∞}^{1} in right angles, we find that

$$
\{x+i y \in \mathbb{D} \mid x=y\}
$$

is the unique hyperbolic line connecting $\frac{1}{3}+\frac{i}{3}$ and $\frac{1}{2}+\frac{i}{2}$.
(IV) (3 points) What is the hyperbolic distance between $\frac{1}{3}+\frac{i}{3}$ and $\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$?

Solution: Observe that the second point lies on the circle at infinity, since its modulus is 1. The first point has modulus less thn 1 and hence lies in \mathbb{D}. Therefore the distance is infinite.
(V) (3 points) Give an example of a hyperbolic geodesic which is not a Euclidean geodesic.

Solution: Recall that a hyperbolic geodesic is just a hyperbolic line, i.e. a distance minimizing path. Given any circle C which intersects the unit circle S_{∞}^{1} at right angles, $C \cap \mathbb{D}$ is a hyperbolic geodesic. For example, we could consider a circle centered at x with radius r, and try to find conditions which make this perpendicular to S_{∞}^{1}.
As a less computational approach, we could simply apply any hyperbolic transformation to the real axis (intersected with \mathbb{D}) to get a new hyperbolic line, and then check that it isn't a Euclidean straight line. For example, we could use

$$
f(z)=\frac{2(z-i / 2)}{z-2 i}
$$

from above. Then the image is

$$
\left\{\left.\frac{2(x-i / 2)}{(x-2 i)} \right\rvert\, x \in(-1,1)\right\} .
$$

Note that this is not a Euclidean geodesic, $\frac{2(x-i / 2)}{x-2 i}$ since is never ∞ for $x \in \mathbb{R} \cup\{\infty\}$.
4. (I) (4 points) Find a formula for a Möbius transformation $f: \mathbb{C}_{+} \rightarrow \mathbb{C}_{+}$such that $f(1)=0, f(2)=1$, and $f(3)=\infty$.

Solution: This is simply given by a cross ratio:

$$
f(z)=\frac{(z-1)(2-3)}{(z-3)(2-1)}=\frac{-(z-1)}{(z-3)}=\frac{-z+1}{z-3}
$$

(II) (3 points) What is $f(\infty)$?

Solution: In general, for the value of $\frac{a z+b}{c z+d}$ at ∞ is a / c. In our case we have $f(\infty)=-1$.
(III) (4 points) What is the inverse map $f^{-1}: \mathbb{C}_{+} \rightarrow \mathbb{C}_{+}$?

Solution:

The corresponding matrix is

$$
\left(\begin{array}{cc}
-1 & 1 \\
1 & -3
\end{array}\right)
$$

so its inverse is given by

$$
\frac{1}{2} \cdot\left(\begin{array}{ll}
-3 & -1 \\
-1 & -1
\end{array}\right)=\left(\begin{array}{ll}
-3 / 2 & -1 / 2 \\
-1 / 2 & -1 / 2
\end{array}\right)
$$

Therefore the inverse Möbius transformation is

$$
f^{-1}(z)=\frac{-3 z / 2-1 / 2}{-z / 2-1 / 2}=\frac{3 z+1}{z+1} .
$$

(IV) (3 points) What is the image of the real axis under f ?

Solution: Since f sends $1,2,3$ to $0,1, \infty$ respectively, it must send the unique cline joining $1,2,3$ to the unique cline joining $0,1, \infty$. In other words, it sends the real axis to the real axis. (This is also easy to see from the formula, since $\frac{-x+1}{x-3}$ is always real if x is.)

